Skip to main content
Log in

Yeast Isolated from Pulque for Application in Microbial Fuel Cells: Use of Food Industry Wastewater as Substrate

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

In this work, exoelectrogenic potential of the yeasts isolated from traditional beverage in México (pulque) in an MFC when corn cooking industry effluent (CCIE) is used as substrate.

Methods

The yeasts were isolated in YPD and a screening was carried out with a sugar assimilation test, selecting the CR4 isolate for the bioelectrochemical tests. For these studies, CR4 was inoculated into a double-chamber MFC containing a carbon cloth (CFE) anode treated with H2SO4. YPD, CCIE and CCIE + NaCl were used as electrolyte. The i0, Rct and Rmt were calculated by fitting polarization curves using the Butler–Volmer kinetic model.

Results

H2SO4 acid treatment increased CFE electrolyte permeation by 3.8x and ionic charge in the barrier zone by 192.5x. CR4 yeast strain generated 222.34 mW/m2 power density in YPD medium and 26.67 mW/m2 using CCIE + 1% NaCl. Tafel analysis revealed mainly faradaic potential losses with Rmt values of 223.117 ± 11.562 Ω in YPD and 1.399 ± 0.015 MΩ in CCIE + 1% NaCl.

Conclusions

Yeast strains from pulque show potential for MFC using CCIE as substrate. Biochemical characterization led to selecting strain CR4 for testing. Acid treatment of the carbon cloth electrode improved permeation and reduced resistance. CR4 yeast strain demonstrated promising EET capabilities for energy generation in MFC. This study highlights the viability of pulque yeast strains for renewable energy research.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Del Angel-Acosta, Y.A., Alvarez, L.H., Garcia-Reyes, R.B., Carrillo-Reyes, J., Garcia-Gonzalez, A., Meza-Escalante, E.R.: Co-digestion of corn (nejayote) and brewery wastewater at different ratios and pH conditions for biohydrogen production. Int. J. Hydrog. Energy 46, 27422–27430 (2021)

    Article  Google Scholar 

  2. López-Maldonado, E.A., Oropeza-Guzmán, M.T.: Nejayote biopolyelectrolytes multifunctionality (glucurono ferulauted arabinoxylans) in the separation of hazardous metal ions from industrial wastewater. Chem. Eng. J. 423, 130210 (2021)

    Article  Google Scholar 

  3. Bacame-Valenzuela, F.J., Pérez-Garcia, J.A., Figueroa-Magallón, M.L., Espejel-Ayala, F., Ortiz-Frade, L.A., Reyes-Vidal, Y.: Optimized production of a redox metabolite (pyocyanin) by Pseudomonas aeruginosa NEJ01R using a maize by-product. Microorganisms 8, 1559 (2020)

    Article  Google Scholar 

  4. Valderrama-Bravo, C., Domínguez-Pacheco, F., Hernández-Aguilar, C., Flores-Saldaña, N., Villagran-Ortíz, P., Pérez-Reyes, C., et al.: Effect of nixtamalized maize with lime water (nejayote) on rheological and microbiological properties of masa. J. Food Process. Preserv. 41, e12748 (2017)

    Article  Google Scholar 

  5. Villada, J.A., Sánchez-Sinencio, F., Zelaya-Ángel, O., Gutiérrez-Cortez, E., Rodríguez-García, M.E.: Study of the morphological, structural, thermal, and pasting corn transformation during the traditional nixtamalization process: from corn to tortilla. J. Food Eng. 212, 242–251 (2017)

    Article  Google Scholar 

  6. Rojas-García, C., García-Lara, S., Serna-Saldivar, S.O., Gutiérrez-Uribe, J.A.: Chemopreventive effects of free and bound phenolics associated to steep waters (nejayote) obtained after nixtamalization of different maize types. Plant Foods Hum. Nutr. 67, 94–99 (2012)

    Article  Google Scholar 

  7. Argun, M.S., Argun, M.E.: Treatment and alternative usage possibilities of a special wastewater: nejayote. J. Food Process. Eng. 41, e12609 (2018)

    Article  Google Scholar 

  8. Castro-Muñoz, R., Fíla, V., Durán-Páramo, E.: A review of the primary by-product (nejayote) of the nixtamalization during maize processing: potential reuses. Waste Biomass Valoriz. 10, 13–22 (2019)

    Article  Google Scholar 

  9. Gutiérrez-Uribe, J.A., Rojas-García, C., García-Lara, S., Serna-Saldivar, S.O.: Phytochemical analysis of wastewater (nejayote) obtained after lime-cooking of different types of maize kernels processed into masa for tortillas. J. Cereal Sci. 52, 410–416 (2010)

    Article  Google Scholar 

  10. López-Pacheco, I.Y., Carrillo-Nieves, D., Salinas-Salazar, C., Silva-Núñez, A., Arévalo-Gallegos, A., Barceló, D., et al.: Combination of nejayote and swine wastewater as a medium for Arthrospira maxima and Chlorella vulgaris production and wastewater treatment. Sci. Total Environ. 676, 356–367 (2019)

    Article  Google Scholar 

  11. Abubackar, H.N., Biryol, Ä., Ayol, A.: Yeast industry wastewater treatment with microbial fuel cells: effect of electrode materials and reactor configurations. Int. J. Hydrog. Energy 48, 12424–12432 (2023)

    Article  Google Scholar 

  12. Xin, X., Hong, J., Liu, Y.: Insights into microbial community profiles associated with electric energy production in microbial fuel cells fed with food waste hydrolysate. Sci. Total Environ. 670, 50–58 (2019)

    Article  Google Scholar 

  13. Du, Z., Li, H., Gu, T.: A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25, 464–482 (2007)

    Article  Google Scholar 

  14. Revelo, D.M., Hurtado, N.H., Ruiz, J.O.: Celdas de combustible microbianas (CCMs): Un reto para la remoción de materia orgánica y la generación de energía eléctrica. Inf. Tecnológica 24, 7–8 (2013)

    Article  Google Scholar 

  15. Mardiana, U., Innocent, C., Cretin, M., Buchari, Setiyanto, H., Nurpalah, R., et al.: Applicability of alginate film entrapped yeast for microbial fuel cell. Russ. J. Electrochem. 55, 78–87 (2019)

    Article  Google Scholar 

  16. Permana, D., Rosdianti, D., Ishmayana, S., Rachman, S.D., Putra, H.E., Rahayuningwulan, D., et al.: Preliminary investigation of electricity production using dual chamber microbial fuel cell (DCMFC) with Saccharomyces Cerevisiae as biocatalyst and methylene blue as an electron mediator. Procedia Chem. 17, 36–43 (2015)

    Article  Google Scholar 

  17. Pal, M., Sharma, R.K.: Development of wheat straw based catholyte for power generation in microbial fuel cell. Biomass Bioenerg. 138, 105591 (2020)

    Article  Google Scholar 

  18. Pal, M., Shrivastava, A., Sharma, R.K.: Electroactive biofilm development on carbon fiber anode by Pichia fermentans in a wheat straw hydrolysate based microbial fuel cell. Biomass Bioenerg. 168, 106682 (2023)

    Article  Google Scholar 

  19. Moradian, J.M., Yang, F.Q., Xu, N., Wang, J.Y., Wang, J.X., Sha, C., et al.: Enhancement of bioelectricity and hydrogen production from xylose by a nanofiber polyaniline modified anode with yeast microbial fuel cell. Fuel 326, 125056 (2022)

    Article  Google Scholar 

  20. Rojas Flores, S., Nazario-Naveda, R., Betines, S.M., De La Cruz–Noriega, M., Cabanillas-Chirinos, L., Valdiviezo-Dominguez, F.: Sugar industry waste for bioelectricity generation. Environ. Res. Eng. Manag. 77, 15–22 (2021)

    Article  Google Scholar 

  21. Kongthale, G., Sotha, S., Michu, P., Madloh, A., Wetchapan, P., Chaijak, P.: Electricity production and phenol removal of winery wastewater by constructed wetland – microbial fuel cell integrated with ethanol tolerant yeast. Biointerface Res. Appl. Chem. 13, 157 (2022)

    Article  Google Scholar 

  22. Verma, M., Mishra, V.: Bioelectricity generation using sweet lemon peels as anolyte and cow urine as catholyte in a yeast-based microbial fuel cell. Waste Biomass Valoriz. (2023). https://doi.org/10.1007/s12649-023-02050-6

    Article  Google Scholar 

  23. Moradian, J.M., Xu, Z., Shi, Y., Fang, Z., Yong, Y.: Efficient biohydrogen and bioelectricity production from xylose by microbial fuel cell with newly isolated yeast of Cystobasidium slooffiae. Int. J. Energy Res. 44, 325–333 (2020)

    Article  Google Scholar 

  24. Jatoi, A.S., Baloch, A.G., Jadhav, A., Nizamuddin, S., Aziz, S., Soomro, S.A., et al.: Improving fermentation industry sludge treatment as well as energy production with constructed dual chamber microbial fuel cell. SN Appl. Sci. 2, 9 (2020)

    Article  Google Scholar 

  25. Silveira, G., de Aquino Neto, S., Schneedorf, J.M.: Development, characterization and application of a low-cost single chamber microbial fuel cell based on hydraulic couplers. Energy 208, 118395 (2020)

    Article  Google Scholar 

  26. Sayed, E.T., Abdelkareem, M.A., Alawadhi, H., Elsaid, K., Wilberforce, T., Olabi, A.G.: Graphitic carbon nitride/carbon brush composite as a novel anode for yeast-based microbial fuel cells. Energy 221, 119849 (2021)

    Article  Google Scholar 

  27. Zohri, A.N.A., Kassim, R.M.F., Hassan, S.H.A.: Methylene blue as an exogenous electron mediator on bioelectricity from molasses using Meyerozyma guilliermondii as biocatalyst. Biomass Convers Biorefinery (2022). https://doi.org/10.1007/s13399-022-03016-9

    Article  Google Scholar 

  28. Michu, P., Chaijak, P.: Electricity generation and winery wastewater treatment using silica modified ceramic separator integrated with yeast-based microbial fuel cell. Commun. Sci. Technol. 7, 98–102 (2022)

    Article  Google Scholar 

  29. Shrivastava, A., Pal, M., Sharma, R.K.: Simultaneous production of bioethanol and bioelectricity in a membrane-less single-chambered yeast fuel cell by Saccharomyces cerevisiae and Pichia fermentans. Arab. J. Sci. Eng. 47, 6763–6771 (2022)

    Article  Google Scholar 

  30. Rojas-Flores, S., Cabanillas-Chirinos, L., Nazario-Naveda, R., Gallozzo-Cardenas, M., Diaz, F., Delfin-Narciso, D., et al.: Use of tangerine waste as fuel for the generation of electric current. Sustainability 15, 3559 (2023)

    Article  Google Scholar 

  31. Christwardana, M., Frattini, D., Accardo, G., Yoon, S.P., Kwon, Y.: Effects of methylene blue and methyl red mediators on performance of yeast based microbial fuel cells adopting polyethylenimine coated carbon felt as anode. J. Power Sour. 396, 1–11 (2018)

    Article  Google Scholar 

  32. Hutzler, M., Riedl, R., Koob, J., Jacob, F.: Fermentation and spoilage yeasts and their relevance for the beverage industry: a review. BrewingScience 65, 33–52 (2012)

    Google Scholar 

  33. Dávila-Ortiz, G., Nicolás-García, M., Osorio-Ruiz, A., Hernández-Fernández, M.Á., de Perea-Flores, M.J.: Pulque: a traditional mexican beverage with health benefits due to its nutritional composition. Hisp Foods Chem. Fermented Foods (2022). https://doi.org/10.1021/bk-2022-1406.ch012

    Article  Google Scholar 

  34. Robledo-Márquez, K., Ramírez, V., González-Córdova, A.F., Ramírez-Rodríguez, Y., García-Ortega, L., Trujillo, J.: Research opportunities: traditional fermented beverages in mexico. cultural, microbiological, chemical, and functional aspects. Food Res. Int. 147, 110482 (2021)

    Article  Google Scholar 

  35. Valdivieso Solís, D.G., Vargas Escamilla, C.A., Mondragón Contreras, N., Galván Valle, G.A., Gilés-Gómez, M., Bolívar, F., et al.: Sustainable production of pulque and maguey in Mexico: current situation and perspectives. Front. Sustain Food Syst. (2021). https://doi.org/10.3389/fsufs.2021.678168

    Article  Google Scholar 

  36. Morales, C., Solís, S., Bacame, F.J., Reyes-Vidal, M.Y., Manríquez, J., Bustos, E.: Electrical stimulation of Cucumis sativus germination and growth using IrO2-Ta2O5|Ti anodes in vertisol pelic. Appl. Soil. Ecol. 161, 103864 (2021)

    Article  Google Scholar 

  37. Morales, C., Solís, S., Bacame-Valenzuela, F.J., Reyes-Vidal, Y., Cárdenas, J., Manríquez, J., et al.: Electrical stimulation of Cucumis sativus in an antrosol using modified electrodes with transition metal oxides at the in situ pilot level. J. Electroanal. Chem. 895, 115528 (2021)

    Article  Google Scholar 

  38. Solís, S., Contreras-Ramos, S.M., Bacame-Valenzuela, F.J., Reyes-Vidal, Y., González-Jasso, E., Bustos, E.: Comparison of the effects of biological and electrical stimulation on the growth of Zea mays. Electrochim. Acta 448, 142193 (2023)

    Article  Google Scholar 

  39. Virgili, R., Simoncini, N., Toscani, T., Camardo Leggieri, M., Formenti, S., Battilani, P.: Biocontrol of Penicillium nordicum growth and ochratoxin a production by native yeasts of dry cured ham. Toxins (Basel) 4, 68–82 (2012)

    Article  Google Scholar 

  40. Asaff-Torres, A. J., Reyes-Vidal, M.: Un método y un Sistema para el Tratamiento Integral de aguas residuales de una industria del maíz. Available online: https://patentscope.wipo.int/search/es/detail.jsf?docId=WO2014119990 (2014). Accessed 27 November 2022

  41. Civiero, E., Pintus, M., Ruggeri, C., Tamburini, E., Sollai, F., Sanjust, E., et al.: Physiological and phylogenetic characterization of Rhodotorula diobovata DSBCA06, a nitrophilous yeast. Biology (Basel) 7, 39 (2018)

    Google Scholar 

  42. Nhut, P.T., Quyen, N.T.N., Truc, T.T., Minh, L.V., An, T.N.T., Anh, N.H.T.: Preliminary study on phytochemical, phenolic content, flavonoids and antioxidant activity of Coriandrum Sativum l. originating in Vietnam. IOP Conf. Ser. Mater. Sci. Eng. 991, 012022 (2020)

    Article  Google Scholar 

  43. Lam, H.-H., Nguyen, T.M.T., Do, T.A.S., Dinh, T.H., Dang-Bao, T.: Quantification of total sugars and reducing sugars of dragon fruit-derived sugar-samples by UV-Vis spectrophotometric method. IOP Conf. Ser. Earth Environ. Sci. 947, 012041 (2021)

    Article  Google Scholar 

  44. Hamelers, H.V.M., ter Heijne, A., Stein, N., Rozendal, R.A., Buisman, C.J.N.: Butler–Volmer–Monod model for describing bio-anode polarization curves. Bioresour. Technol. 102, 381–387 (2011)

    Article  Google Scholar 

  45. Liu, F., Ma, B., He, Z., Bai, P.: Electron transfer kinetics at anode interface in microbial electrochemical systems. Electrochim. Acta 432, 141188 (2022)

    Article  Google Scholar 

  46. Bard, A.J., Faulkner, L.R.: In: Harris, D., Swain, E., Aiello, E. (eds.) Electrochemical methods - fundamentals and applications, 2nd edn. Wiley, New York (2001)

    Google Scholar 

  47. Rocha-Arriaga, C., Cruz-Ramirez, A.: Yeast and nonyeast fungi: the hidden allies in pulque fermentation. Curr. Opin. Food Sci. 47, 100878 (2022)

    Article  Google Scholar 

  48. Niño-Medina, G., Carvajal-Millán, E., Lizardi, J., Rascon-Chu, A., Marquez-Escalante, J.A., Gardea, A., et al.: Maize processing waste water arabinoxylans: gelling capability and cross-linking content. Food Chem. 115, 1286–1290 (2009)

    Article  Google Scholar 

  49. Ramírez-Romero, G., Reyes-Velazquez, M., Cruz-Guerrero, A.: Estudio del nejayote como medio de crecimiento de probióticos y producción de bacteriocinas. Rev. Mex Ing. Química 12, 463–471 (2013)

    Google Scholar 

  50. Ayala-Soto, F.E., Serna-Saldívar, S.O., García-Lara, S., Pérez-Carrillo, E.: Hydroxycinnamic acids, sugar composition and antioxidant capacity of arabinoxylans extracted from different maize fiber sources. Food Hydrocoll. 35, 471–475 (2014)

    Article  Google Scholar 

  51. Cui, S., Ma, X., Wang, X., Zhang, T.A., Hu, J., Tsang, Y.F., et al.: Phenolic acids derived from rice straw generate peroxides which reduce the viability of Staphylococcus aureus cells in biofilm. Ind. Crops Prod. 140, 111561 (2019)

    Article  Google Scholar 

  52. Bamba, T., Guirimand, G., Kondo, A., Hasunuma, T.: Enzyme display technology for lignocellulosic biomass valorization by yeast cell factories. Curr. Opin. Green. Sustain. Chem. 33, 100584 (2022)

    Article  Google Scholar 

  53. Villela-Castrejón, J., Acosta-Estrada, B.A., Gutiérrez-Uribe, J.A.: Microencapsulation of corn wastewater (nejayote) phytochemicals by spray drying and their release under simulated gastrointestinal digestion. J. Food Sci. 82, 1726–1734 (2017)

    Article  Google Scholar 

  54. Salinas-Moreno, Y., García-Salinas, C., Ramírez-Díaz, J.L., Alemán-de la Torre, I.: Phenolic compounds in maize grains and its nixtamalized products. In: Soto-Hernandez, M., Palma-Tenango, M., del RosarioGarcia-Mateos, M. (eds.) Phenolic compounds-natural sources, importance and applications, pp. 215–232. InTech, London (2017)

    Google Scholar 

  55. Del Pozo-Insfran, D., Brenes, C.H., Serna Saldivar, S.O., Talcott, S.T.: Polyphenolic and antioxidant content of white and blue corn (Zea mays L.) products. Food Res. Int. 39, 696–703 (2006)

    Article  Google Scholar 

  56. Cançado, L.G., Takai, K., Enoki, T., Endo, M., Kim, Y.A., Mizusaki, H., et al.: General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88, 163106 (2006)

    Article  Google Scholar 

  57. Cross, A.D., Jones, R.A.: An introduction to practical infra-red spectroscopy, 3rd edn. Springer US, Boston, MA (1969)

    Book  Google Scholar 

  58. Bisquert, J.: Influence of the boundaries in the impedance of porous film electrodes. Phys. Chem. Chem. Phys. 2, 4185–4192 (2000)

    Article  Google Scholar 

  59. Bisquert, J.: Theory of the impedance of electron diffusion and recombination in a thin layer. J. Phys. Chem. B 106, 325–333 (2002)

    Article  Google Scholar 

  60. Kong, D.S.: Anion-incorporation model proposed for interpreting the interfacial physical origin of the faradaic pseudocapacitance observed on anodized valve metals—with anodized titanium in fluoride-containing perchloric acid as an example. Langmuir 26, 4880–4891 (2010)

    Article  Google Scholar 

  61. Savova-Stoynov, B., Stoynov, Z.B.: Analysis of the inductance influence on the measured electrochemical impedance. J. Appl. Electrochem. 17, 1150–1158 (1987)

    Article  Google Scholar 

  62. Chong, P., Erable, B., Bergel, A.: Effect of pore size on the current produced by 3-dimensional porous microbial anodes: a critical review. Bioresour. Technol 289, 121641 (2019)

    Article  Google Scholar 

  63. Hu, L., Yang, Y., Fu, Q., Zhang, L., Zhu, X., Li, J., et al.: In situ probing the mass transport property inside an imitated three-dimensional porous bioelectrode. Environ. Sci. Technol. 57, 6159–6168 (2023)

    Article  Google Scholar 

  64. Christwardana, M., Joelianingsih, J., Yoshi, L.A.: Synergistic of yeast Saccharomyces cerevisiae and glucose oxidase enzyme as co-biocatalyst of enzymatic microbial fuel cell (EMFC) in converting sugarcane bagasse extract into electricity. J. Electrochem. Sci. Eng. 13, 321–332 (2023)

    Google Scholar 

  65. Duarte, K.D.Z., Kwon, Y.: In situ carbon felt anode modification via codeveloping Saccharomyces cerevisiae living-template titanium dioxide nanoclusters in a yeast-based microbial fuel cell. J. Power Sour. 474, 228651 (2020)

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

FJB-V; Conceptualization, Data curation, Supervision, Validation, Visualization, Writing—review & editing; YR-V: Investigation, Methodology, Roles/Writing—original draft; JAP-G: Formal analysis, Methodology, Writing—review & editing; JM: Formal analysis, Validation, Software; PG-S: Methodology, Software; YMZ-C: Investigation; Methodology.

Corresponding author

Correspondence to Francisco Javier Bacame-Valenzuela.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes-Vidal, Y., Pérez-García, J.A., Manríquez, J. et al. Yeast Isolated from Pulque for Application in Microbial Fuel Cells: Use of Food Industry Wastewater as Substrate. Waste Biomass Valor 15, 1423–1438 (2024). https://doi.org/10.1007/s12649-023-02230-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02230-4

Keywords

Navigation