Skip to main content
Log in

Single Step Heating for Facile Extraction of Cellulose Fibers from Rice Straw and Its Copper Oxide Nanoparticles Coating for Catalytic Reduction Application

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study, cellulose fibres were extracted from agro-waste (rice straws) via a single step heating process. Furthermore, one step copper oxide nanoparticles coating, without any reducing agent was done on cellulose fibres. This agro-waste-based composite was employed as a catalyst for the reduction of methylene blue dye. Characteristics studies of composite using X-Ray diffraction, Fourier transform infrared spectroscopy, Field emission scanning electron microscope and Energy dispersive X-ray confirmed the successful extraction of cellulose-I polymorph and coating of monoclinic copper oxide nanoparticles. They also exhibited good thermal stability as investigated from thermo gravimetric analysis. UV–visible absorbance studies confirmed a 95.6% reduction of methylene blue (MB) dye within 7–8 min in the presence of 30 mg as an optimized concentration of catalyst (copper oxide nanoparticles coated cellulose fibres with sodium borohydride as a reducing agent). Kinetic studies showed that reduction reaction was following first-order kinetic with a rate constant of 0.193 min−1. Binding stability was confirmed from inductively coupled plasma mass spectroscopy (ICM-PS). From ICM-PS, it was found that the water solution was recovered without release of nanoparticles after completion of catalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10

Similar content being viewed by others

Data Availability

Data will be made available by corresponding author on reasonable request.

References

  1. Tremier, A., Druilhe, C., Dabert, P.: Part b: global assessment for organic resources and waste management ORBIT2012. Waste Biomass Valor 5, 429–431 (2014). https://doi.org/10.1007/s12649-014-9304-9

    Article  Google Scholar 

  2. Shaikh, H.M., Pandare, K.V., Nair, G., Varma, A.J.: Utilization of sugarcane bagasse cellulose for producing cellulose acetates: novel use of residual hemicellulose as plasticizer. Carbohydr. Polym. 76, 23–29 (2009). https://doi.org/10.1016/j.carbpol.2008.09.014

    Article  CAS  Google Scholar 

  3. Malladi, R., Nagalakshmaiah, M., Robert, M.: Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustain. Chem. Eng. 6(3), 2807–2828 (2018). https://doi.org/10.1021/acssuschemeng.7b03437

    Article  CAS  Google Scholar 

  4. Fernandes, I.J., Calheiro, D., Kieling, A.G., Brehm, F.A., Rigon, M.R., Filho, B., Osorio, E.: Review of the rice production cycle: by-products and the main applications focusing on rice husk combustion and ash recycling. Waste Manage. Res. 32(11), 1034–1048 (2014). https://doi.org/10.1177/0734242X14557379

    Article  CAS  Google Scholar 

  5. Prasara-A, J., Gheewala, S.H.: Sustainable utilization of rice husk ash from power plants: a review. J. Clean. Prod. 167, 1020–1028 (2017). https://doi.org/10.1016/j.jclepro.2016.11.042

    Article  Google Scholar 

  6. Marlon, J.R., Bartlein, P.J., Carcaillet, C., Gavin, D.G., Harrison, S.P., Higuera, P.E.: Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 1(10), 697–702 (2009). https://doi.org/10.1038/ngeo313

    Article  CAS  ADS  Google Scholar 

  7. Elbasiouny, H., Elbanna, B.A., Al-Najoli, E., Alsherief, A., Negm, S., Abou El-Nour, E., Nofal, A., Sharabash, S.: Agricultural waste management for climate change mitigation: some implications to Egypt. Springer Water (2020). https://doi.org/10.1007/978-3-030-18350-9_8

    Article  Google Scholar 

  8. Mazlan, N.A., Samad, K.A., Wan Yussof, H., Saufi, S.M., Jahim, J.: Xylooligosaccharides from potential agricultural waste: characterization and screening on the enzymatic hydrolysis factors. Ind. Crops Prod. 129, 575–584 (2019). https://doi.org/10.1016/j.indcrop.2018.12.042

    Article  CAS  Google Scholar 

  9. Dhillon, G.S., Oberoi, H.S., Kaur, S., Bansal, S., Brar, S.K.: Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind. Crops Prod. 34, 1160–1167 (2011). https://doi.org/10.1016/j.indcrop.2011.04.001

    Article  CAS  Google Scholar 

  10. Bajpai, P.: Structure of lignocellulosic biomass. Springer, Singapore (2016)

    Book  Google Scholar 

  11. Xu, J., Krietemeyer, E.F., Boddu, V.M., Liu, S.X., Liu, W.C.: Production and characterization of cellulose nanofibril (CNF) from agricultural waste corn stover. Carbohydr. Polym. 192, 202–207 (2018). https://doi.org/10.1016/j.carbpol.2018.03.017

    Article  CAS  PubMed  Google Scholar 

  12. Debnath, B., Haldar, D., Purkait, M.K.: A critical review on the techniques used for the synthesis and applications of crystalline cellulose derived from agricultural wastes and forest residues. Carbohydr. Polym. 273, 118537 (2021). https://doi.org/10.1016/j.carbpol.2021.118537

    Article  CAS  PubMed  Google Scholar 

  13. Prasad, R., Kumar, M., Kumar, V.: Nanotechnology: an agricultural paradigm. Nanotechnol. An Agric. Paradig (2017). https://doi.org/10.1007/978-981-10-4573-8

    Article  Google Scholar 

  14. Shrestha, S., Kognou, A.L.M., Zhang, J., Qin, W.: Different facets of lignocellulosic biomass including pectin and its perspectives. Waste Biomass Valor 12, 4805–4823 (2021). https://doi.org/10.1007/s12649-020-01305-w

    Article  Google Scholar 

  15. Cordin, M., Pham, T.: Extraction of cellulose fibers from flax and hemp: a review. Cellulose 28(13), 8275–8294 (2021). https://doi.org/10.1007/s10570-021-04051-x

    Article  CAS  Google Scholar 

  16. Johar, N., Ahmad, I., Dufresne, A.: Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind. Crops Prod. 37, 93–99 (2012). https://doi.org/10.1016/j.indcrop.2011.12.016

    Article  CAS  Google Scholar 

  17. Huang, S., Liu, X., Chang, C., Wang, Y.: Recent developments and prospective food-related applications of cellulose nanocrystals: a review. Cellulose 27, 2991–3011 (2020). https://doi.org/10.1007/s10570-020-02984-3

    Article  CAS  Google Scholar 

  18. Teo, H.L., Wahab, R.A.: International Journal of Biological Macromolecules Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: a review. Int. J. Biol. Macromol. 161, 1414–1430 (2020). https://doi.org/10.1016/j.ijbiomac.2020.08.076

    Article  CAS  PubMed  Google Scholar 

  19. Khawaja, H., Zahir, E., Asif, M., Arif, M.: International Journal of Biological Macromolecules Graphene oxide decorated with cellulose and copper nanoparticle as an ef fi cient adsorbent for the removal of malachite green. Int. J. Biol. Macromol. 167, 23–34 (2021). https://doi.org/10.1016/j.ijbiomac.2020.11.137

    Article  CAS  PubMed  Google Scholar 

  20. Bhandari, K., Roy, S., Arup, M., Rice, Á.M.Á.: Synthesis and characterization of microcrystalline cellulose from rice husk. J. Inst. Eng. Ser. E. 101, 99–108 (2020). https://doi.org/10.1007/s40034-020-00160-7

    Article  CAS  Google Scholar 

  21. Tripathi, S., Sharma, N., Alam, I., Bhardwaj, N.K.: Effectiveness of different green chemistry approaches during mixed hardwood bamboo pulp bleaching and their impact on environment. Int. J. Environ. Sci. Technol. 16, 4327–4338 (2019). https://doi.org/10.1007/s13762-018-1887-4

    Article  CAS  Google Scholar 

  22. Nuruddin, M., Hosur, M., Uddin, M.J., Baah, D., Jeelani, S.: A novel approach for extracting cellulose nanofibers from lignocellulosic biomass by ball milling combined with chemical treatment. J. Appl. Polym. Sci. 133, 1–10 (2016). https://doi.org/10.1002/app.42990

    Article  CAS  Google Scholar 

  23. Approach, A.G.: Extraction of cellulose micro-whiskers from rice husk: a greener approach. J. Nanosci. Nanotechnol. 18(5), 3702–3708 (2018). https://doi.org/10.1166/jnn.2018.14676

    Article  CAS  Google Scholar 

  24. Ravindra, A.B., Chandrashekhar, W.P., Shivajirao, P.P., Laxmiputra, P.M., Arvind, L.M.: Pure hydrolyzable cellulose from rice straw, wheat straw and sugarcane bagasse by a simple scalable two-step treatment. Sustain Chem Eng. 2, 1–20 (2021). https://doi.org/10.37256/sce.222021782

    Article  Google Scholar 

  25. Bezerra, R.D.S., Teixeira, P.R.S., Teixeira, A.S.N.M., Eiras, C., Osajima, J.A., Filho, E.C.S.: Chemical functionalization of cellulosic materials—main reactions and applications in the contaminants removal of aqueous medium. Cellul. - Fundam. Asp. Curr. Trends. (2015). https://doi.org/10.5772/61431

    Article  Google Scholar 

  26. Dong, B.H., Hinestroza, J.P.: Metal nanoparticles on natural cellulose fibers: electrostatic assembly and in situ synthesis. ACS Appl. Mater. Interfaces. 1(4), 797–803 (2009). https://doi.org/10.1021/am800225j

    Article  CAS  PubMed  Google Scholar 

  27. Islam, T., Dominguez, N., Ahsan, A., Dominguez-cisneros, H., Zuniga, P., Alvarez, P.J.J., Noveron, J.C.: Journal of Environmental Chemical Engineering Sodium rhodizonate induced formation of gold nanoparticles supported on cellulose fi bers for catalytic reduction of 4-nitrophenol and organic dyes. J. Environ. Chem. Eng. 5, 4185–4193 (2017). https://doi.org/10.1016/j.jece.2017.08.017

    Article  CAS  Google Scholar 

  28. Nagarajan, D., Venkatanarasimhan, S.: Copper(II) oxide nanoparticles coated cellulose sponge—an effective heterogeneous catalyst for the reduction of toxic organic dyes. Environ. Sci. Pollut. Res. 26, 22958–22970 (2019). https://doi.org/10.1007/s11356-019-05419-0

    Article  CAS  Google Scholar 

  29. Bajaj, B., Joh, H.I., Jo, S.M., Kaur, G., Sharma, A., Tomar, M., Gupta, V., Lee, S.: Controllable one step copper coating on carbon nanofibers for flexible cholesterol biosensor substrates. J. Mater. Chem. B. 4, 229–236 (2015). https://doi.org/10.1039/c5tb01781e

    Article  PubMed  Google Scholar 

  30. Benhadria, N., Hachemaoui, M., Zaoui, F., Mokhtar, A., Boukreris, S., Attar, T., Belarbi, L., Boukoussa, B.: Catalytic reduction of methylene blue dye by copper oxide nanoparticles. J. Clust. Sci. 33, 1–12 (2021). https://doi.org/10.1007/s10876-020-01950-0

    Article  CAS  Google Scholar 

  31. Hachemaoui, M., Mokhtar, A., Mekki, A., Zaoui, F., Abdelkrim, S., Hacini, S., Boukoussa, B.: International Journal of Biological Macromolecules Composites beads based on Fe3O4 @ MCM-41 and calcium alginate for enhanced catalytic reduction of organic dyes. Int. J. Biol. Macromol. 164, 468–479 (2020). https://doi.org/10.1016/j.ijbiomac.2020.07.128

    Article  CAS  PubMed  Google Scholar 

  32. Mariano, M., Cercená, R., Soldi, V.: Thermal characterization of cellulose nanocrystals isolated from sisal fibers using acid hydrolysis. Ind. Crop. Prod. 94, 454–462 (2016). https://doi.org/10.1016/j.indcrop.2016.09.011

    Article  CAS  Google Scholar 

  33. Karimi, S., Tahir, P.M., Karimi, A., Dufresne, A., Abdulkhani, A.: Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydr. Polym. 101, 878–885 (2014). https://doi.org/10.1016/j.carbpol.2013.09.106

    Article  CAS  PubMed  Google Scholar 

  34. Dhali, K., Ghasemlou, M., Daver, F., Cass, P., Adhikari, B.: Science of the Total Environment A review of nanocellulose as a new material towards environmental sustainability. Sci. Total Environ. 775, 145871 (2021). https://doi.org/10.1016/j.scitotenv.2021.145871

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Ali, S., Bahadar, S., Farooq, A., Asiri, A.M.: International Journal of Biological Macromolecules A facile synthesis of CuAg nanoparticles on highly porous ZnO / carbon black-cellulose acetate sheets for nitroarene and azo dyes reduction / degradation. Int. J. Biol. Macromol. 130, 288–299 (2019). https://doi.org/10.1016/j.ijbiomac.2019.02.114

    Article  CAS  Google Scholar 

  36. Lu, P., Hsieh, Y.: Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr. Polym. 87, 564–573 (2012). https://doi.org/10.1016/j.carbpol.2011.08.022

    Article  CAS  PubMed  Google Scholar 

  37. Das, A.M., Ali, A.A., Hazarika, M.P.: Synthesis and characterization of cellulose acetate from rice husk: eco-friendly condition. Carbohydr. Polym. 112, 342–349 (2014). https://doi.org/10.1016/j.carbpol.2014.06.006

    Article  CAS  PubMed  Google Scholar 

  38. Chen, X., Yu, J., Zhang, Z., Lu, C.: Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydr. Polym. 85, 245–250 (2011). https://doi.org/10.1016/j.carbpol.2011.02.022

    Article  CAS  Google Scholar 

  39. Bisla, V., Rattan, G., Singhal, S., Kaushik, A.: Green and novel adsorbent from rice straw extracted cellulose for efficient adsorption of Hg (II) ions in an aqueous medium. Int. J. Biol. Macromol. 161, 194–203 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.035

    Article  CAS  PubMed  Google Scholar 

  40. Peng, S., Fan, L., Rao, W., Bai, Z., Xu, W., Xu, J.: Bacterial cellulose membranes coated by polypyrrole/copper oxide as flexible supercapacitor electrodes. J. Mater. Sci. 52, 1930–1942 (2017). https://doi.org/10.1007/s10853-016-0482-7

    Article  CAS  ADS  Google Scholar 

  41. Saravanakumar, K., Sathiyaseelan, A., Mariadoss, A.V.A., Xiaowen, H., Wang, M.H.: Physical and bioactivities of biopolymeric films incorporated with cellulose, sodium alginate and copper oxide nanoparticles for food packaging application. Int. J. Biol. Macromol. 153, 207–214 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.250

    Article  CAS  PubMed  Google Scholar 

  42. Araújo, I.M.S., Silva, R.R., Pacheco, G., Lustri, W.R., Tercjak, A., Gutierrez, J., Júnior, J.R.S., Azevedo, F.H.C., Figuêredo, G.S., Vega, M.L., Ribeiro, S.J.L., Barud, H.S.: Hydrothermal synthesis of bacterial cellulose–copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohydr. Polym. 179, 341–349 (2018). https://doi.org/10.1016/j.carbpol.2017.09.081

    Article  CAS  PubMed  Google Scholar 

  43. Abraham, E., Deepa, B., Pothan, L.A., Jacob, M., Thomas, S., Cvelbar, U., Anandjiwala, R.: Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr. Polym. 86, 1468–1475 (2011). https://doi.org/10.1016/j.carbpol.2011.06.034

    Article  CAS  Google Scholar 

  44. Zhang, Y.H.P., Lynd, L.R.: Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng. 88, 797–824 (2004). https://doi.org/10.1002/bit.20282

    Article  CAS  PubMed  Google Scholar 

  45. Hernandez, C.C., Ferreira, F.F., Rosa, D.S.: X-ray powder diffraction and other analyses of cellulose nanocrystals obtained from corn straw by chemical treatments. Carbohydr. Polym. 193, 39–44 (2018). https://doi.org/10.1016/j.carbpol.2018.03.085

    Article  CAS  PubMed  Google Scholar 

  46. El Achaby, M., El Miri, N., Aboulkas, A., Zahouily, M., Bilal, E., Barakat, A., Solhy, A.: Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. Int. J. Biol. Macromol. 96, 340–352 (2017). https://doi.org/10.1016/j.ijbiomac.2016.12.040

    Article  CAS  PubMed  Google Scholar 

  47. Orelma, H., Hokkanen, A., Leppänen, I., Kammiovirta, K., Kapulainen, M., Harlin, A.: Optical cellulose fiber made from regenerated cellulose and cellulose acetate for water sensor applications. Cellulose 27, 1543–1553 (2020). https://doi.org/10.1007/s10570-019-02882-3

    Article  CAS  Google Scholar 

  48. Wang, S., Zhang, T., Li, J., Fang, L., Liu, X., Guo, M.: Exploration of the origin of the UV absorption performance of Windmill Palm fiber. BioResources 11, 2607–2616 (2016). https://doi.org/10.15376/BIORES.11.1.2607-2616

    Article  CAS  Google Scholar 

  49. Yong-song, L.U.O., Xiao-hong, X.I.A., Qin-feng, R.E.N., Su-qin, L.I., Jia-lin, L.I., Zhi-jie, J.I.A.: Preparation and studies on optical properties of Cu 2O nanoflowers. J. Electron. Mater. 26(2), 11 (2007)

    Google Scholar 

  50. Morán, J.I., Alvarez, V.A., Cyras, V.P., Vázquez, A.: Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15, 149–159 (2008). https://doi.org/10.1007/s10570-007-9145-9

    Article  CAS  Google Scholar 

  51. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007). https://doi.org/10.1016/j.fuel.2006.12.013

    Article  CAS  Google Scholar 

  52. Mandal, A., Chakrabarty, D.: Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr. Polym. 86, 1291–1299 (2011). https://doi.org/10.1016/j.carbpol.2011.06.030

    Article  CAS  Google Scholar 

  53. Dilamian, M., Noroozi, B.: A combined homogenization-high intensity ultrasonication process for individualizaion of cellulose micro-nano fibers from rice straw. Cellulose 26, 5831–5849 (2019). https://doi.org/10.1007/s10570-019-02469-y

    Article  CAS  Google Scholar 

  54. Trache, D., Donnot, A., Khimeche, K., Benelmir, R., Brosse, N.: Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohydr. Polym. 104, 223–230 (2014). https://doi.org/10.1016/j.carbpol.2014.01.058

    Article  CAS  PubMed  Google Scholar 

  55. Bettaieb, F., Khiari, R., Dufresne, A., Mhenni, M.F., Belgacem, M.N.: Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohydr. Polym. 123, 99–104 (2015). https://doi.org/10.1016/j.carbpol.2015.01.026

    Article  CAS  PubMed  Google Scholar 

  56. Tarchoun, A.F., Trache, D., Klapötke, T.M.: Microcrystalline cellulose from Posidonia oceanica brown algae: Extraction and characterization. Int. J. Biol. Macromol. 138, 837–845 (2019). https://doi.org/10.1016/j.ijbiomac.2019.07.176

    Article  CAS  PubMed  Google Scholar 

  57. Mohamad Haafiz, M.K., Eichhorn, S.J., Hassan, A., Jawaid, M.: Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr. Polym. 93, 628–634 (2013). https://doi.org/10.1016/j.carbpol.2013.01.035

    Article  CAS  PubMed  Google Scholar 

  58. Chen, W., Yu, H., Liu, Y., Hai, Y., Zhang, M., Chen, P.: Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18, 433–442 (2011). https://doi.org/10.1007/s10570-011-9497-z

    Article  CAS  Google Scholar 

  59. Harini, K., Ramya, K., Sukumar, M.: Extraction of nano cellulose fibers from the banana peel and bract for production of acetyl and lauroyl cellulose. Carbohydr. Polym. 201, 329–339 (2018). https://doi.org/10.1016/j.carbpol.2018.08.081

    Article  CAS  PubMed  Google Scholar 

  60. Naduparambath, S., Purushothaman, E.: Sago seed shell: determination of the composition and isolation of microcrystalline cellulose (MCC). Cellulose 23, 1803–1812 (2016). https://doi.org/10.1007/s10570-016-0904-3

    Article  CAS  Google Scholar 

  61. Abdul Khalil, H.P.S., Lai, T.K., Tye, Y.Y., Paridah, M.T., Fazita, M.R.N., Azniwati, A.A., Dungani, R., Rizal, S.: Preparation and characterization of microcrystalline cellulose from sacred bali bamboo as reinforcing filler in seaweed-based composite film. Fibers Polym. 19, 423–434 (2018). https://doi.org/10.1007/s12221-018-7672-7

    Article  CAS  Google Scholar 

  62. Huntley, C.J., Crews, K.D., Abdalla, M.A., Russell, A.E., Curry, M.L.: Influence of strong acid hydrolysis processing on the thermal stability and crystallinity of cellulose isolated from wheat straw. J Chem Eng Int (2015). https://doi.org/10.1155/2015/658163

    Book  Google Scholar 

  63. Ibrahim, M.M., El-Zawawy, W.K., Jüttke, Y., Koschella, A., Heinze, T.: Cellulose and microcrystalline cellulose from rice straw and banana plant waste: preparation and characterization. Cellulose 20, 2403–2416 (2013). https://doi.org/10.1007/s10570-013-9992-5

    Article  CAS  Google Scholar 

  64. Oun, A.A., Rhim, J.W.: Characterization of carboxymethyl cellulose-based nanocomposite films reinforced with oxidized nanocellulose isolated using ammonium persulfate method. Carbohydr. Polym. 174, 484–492 (2017). https://doi.org/10.1016/j.carbpol.2017.06.121

    Article  CAS  PubMed  Google Scholar 

  65. Sirviö, J.A., Anttila, A.K., Pirttilä, A.M., Liimatainen, H., Kilpeläinen, I., Niinimäki, J., Hormi, O.: Cationic wood cellulose films with high strength and bacterial anti-adhesive properties. Cellulose 21, 3573–3583 (2014). https://doi.org/10.1007/s10570-014-0351-y

    Article  CAS  Google Scholar 

  66. Khalil, A., Ali, N., Khan, A., Asiri, A.M., Kamal, T.: International Journal of Biological Macromolecules Catalytic potential of cobalt oxide and agar nanocomposite hydrogel for the chemical reduction of organic pollutants. Int. J. Biol. Macromol. 164, 2922–2930 (2020). https://doi.org/10.1016/j.ijbiomac.2020.08.140

    Article  CAS  PubMed  Google Scholar 

  67. Nasrollahzadeh, M.: RSC Advances Cassytha fi liformis L. extract and investigation of its blue, congo red and nitro compounds in aqueous media. RSC Adv 8, 3723–3735 (2018). https://doi.org/10.1039/c7ra13491f

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  68. Begum, R., Najeeb, J., Sattar, A., Naseem, K., Irfan, A.: Chemical reduction of methylene blue in the presence of nanocatalysts: a critical review. Rev. Chem. Eng. 36(6), 749–770 (2019)

    Article  Google Scholar 

  69. Wunder, S., Polzer, F., Lu, Y., Mei, Y., Ballauff, M.: Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114(9), 8814–8820 (2010)

    Article  CAS  Google Scholar 

  70. Din, M.I., Khalid, R., Hussain, Z.: Novel in-situ synthesis of copper oxide nanoparticle in smart polymer microgel for catalytic reduction of methylene blue. J. Mol. Liq. 358, 119181 (2022). https://doi.org/10.1016/j.molliq.2022.119181

    Article  CAS  Google Scholar 

  71. Benali, F., Boukoussa, B., Ismail, I., Hachemaoui, M., Iqbal, J., Taha, I., Cherifi, Z., Mokhtar, A.: One pot preparation of CeO2@Alginate composite beads for the catalytic reduction of MB dye: effect of cerium percentage. Surf Interfaces. 26, 101306 (2021). https://doi.org/10.1016/j.surfin.2021.101306

    Article  CAS  Google Scholar 

  72. Saikia, P., Miah, A.T., Das, P.P.: Highly efficient catalytic reductive degradation of various organic dyes by Au/CeO2-TiO2 nano-hybrid. J. Chem. Sci. 129, 81–93 (2017). https://doi.org/10.1007/s12039-016-1203-0

    Article  CAS  Google Scholar 

  73. Musa, A., Ahmad, M.B., Hussein, M.Z., Saiman, M.I., Sani, H.A.: Effect of gelatin-stabilized copper nanoparticles on catalytic reduction of methylene blue. Nanoscale Res. Lett. 11, 1–13 (2016). https://doi.org/10.1186/s11671-016-1656-6

    Article  CAS  Google Scholar 

  74. Hachemaoui, M., Boukoussa, B., Ismail, I., Mokhtar, A., Taha, I., Iqbal, J., Hacini, S., Bengueddach, A., Hamacha, R.: CuNPs-loaded amines-functionalized-SBA-15 as effective catalysts for catalytic reduction of cationic and anionic dyes. Colloids Surf A Physicochem. Eng. Asp. 623, 126729 (2021). https://doi.org/10.1016/j.colsurfa.2021.126729

    Article  CAS  Google Scholar 

  75. Qian, L., Wang, Z., Ding, J., Tian, H., Li, K., Li, B., Li, H.: A 2D copper ( I ) metal-organic framework : Synthesis, structure and luminescence sensing for cupric, ferric, chromate and TNP. Dyes Pigm. 175, 108159 (2020)

    Article  CAS  Google Scholar 

  76. Sharma, P.R., Sharma, S.K., Antoine, R., Hsiao, B.S.: Efficient removal of arsenic using zinc oxide nanocrystals decorated regenerated microfibrillated cellulose scaffolds. ACS Sustain. Chem. Eng. 7(6), 6140–6151 (2019). https://doi.org/10.1021/acssuschemeng.8b06356

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the University Grants Commission (UGC), New Delhi for providing financial assistance under UGC Start-up Grant and Department of Science and Technology, Chandigarh for providing financial assistance under project “Fabrication of activated carbon fibers from food waste for waste water treatment” respectively. One of the authors also expresses thanks to UGC, New Delhi for providing financial assistance through research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

S: experimental and data analysis, writing—draft preparation, N: experimental; AP: draft editing; BB: conceptualization, supervision methodology, correction of original draft.

Corresponding author

Correspondence to Bharat Bajaj.

Ethics declarations

Conflict of Interest

There is no conflict of interest among all the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 604 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suman, Nishtha, Panwar, A. et al. Single Step Heating for Facile Extraction of Cellulose Fibers from Rice Straw and Its Copper Oxide Nanoparticles Coating for Catalytic Reduction Application. Waste Biomass Valor 15, 989–1003 (2024). https://doi.org/10.1007/s12649-023-02203-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02203-7

Keywords

Navigation