Skip to main content

Advertisement

Log in

Performance of Fluidized-Bed Bioreactor in Copper Bioleaching from Printed Circuit Boards using Alcaligenes aquatilis

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Technological advancements have led to a demand for modern electronic gadgets and outdated ones discarded as electronic waste (e-waste). The printed circuit boards (PCBs) constitute a significant portion of these wastes that contain hazardous substances that mandate e-waste management. The rich source of precious and base metals makes it a resource for urban mining. Bioleaching, a process of biohydrometallurgy, an alternative to conventional heat and chemical-based metal recovery processes, can be efficiently applied for metal recovery from these wastes in an environmentally safe manner. The process parameters like particle size, inoculum size (v/v), and e-waste load (w/v) for bioleaching of Cu from PCBs in a Fluidized-Bed bioreactor (FBR) and shake flask using Alcaligenes aquatilis as bioleaching agent were optimized. The bioleaching of 47.99% and 37.54% of Cu from PCBs were achieved in shake flask and FBR, respectively. The optimal conditions of Cu bioleaching were 0.175 mm particle size, 5% (v/v) inoculum, and 2% (w/v) e-waste load with 169.45 mg/g and 132.55 mg/g of Cu recovery in shake flask and FBR at 84 and 96 h, respectively. Further, the Cu bioleaching was carried out in sequential batches to improve the recovery with the optimized conditions. There was a prominent increase in the cumulative %Cu bioleaching of about 80.02% after three sequential batch experiments from PCBs with an initial Cu concentration of 353.09 mg/g. The present study proves that sustainable heterotrophic bioleaching of Cu can be efficiently achieved in a Fluidized-bed bioreactor operated in sequential batch mode by Alcaligenes aquatilis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Andeobu, L., Wibowo, S., Grandhi, S.: A systematic review of E-waste generation and environmental management of Asia Pacific countries. Int. J. Environ. Res. Public Health. (2021). https://doi.org/10.3390/ijerph18179051

    Article  PubMed  PubMed Central  Google Scholar 

  2. Abdelbasir, S.M., Hassan, S.S.M., Kamel, A.H., El-Nasr, R.S.: Status of electronic waste recycling techniques: a review. Environ. Sci. Pollut. Res. 25, 16533–16547 (2018). https://doi.org/10.1007/s11356-018-2136-6

    Article  Google Scholar 

  3. Ikhlayel, M.: An integrated approach to establish e-waste management systems for developing countries. J. Clean. Prod. 170, 119–130 (2018). https://doi.org/10.1016/j.jclepro.2017.09.137

    Article  Google Scholar 

  4. Chatterjee, A., Abraham, J.: Efficient management of e-wastes. Int. J. Environ. Sci. Technol. 14, 211–222 (2017). https://doi.org/10.1007/s13762-016-1072-6

    Article  CAS  Google Scholar 

  5. Thakur, P., Kumar, S.: Evaluation of e-waste status, management strategies, and legislations. Int. J. Environ. Sci. Technol. (2021). https://doi.org/10.1007/s13762-021-03383-2

    Article  Google Scholar 

  6. Panchal, R., Singh, A., Diwan, H.: Economic potential of recycling e-waste in India and its impact on import of materials. Resour Policy. 74, 102264 (2021). https://doi.org/10.1016/j.resourpol.2021.102264

    Article  Google Scholar 

  7. Zhou, Y., Wu, W., Qiu, K.: Recovery of materials from waste printed circuit boards by vacuum pyrolysis and vacuum centrifugal separation. Waste Manag. 30, 2299–2304 (2010). https://doi.org/10.1016/j.wasman.2010.06.012

    Article  CAS  PubMed  Google Scholar 

  8. Dave, S.R., Sodha, A.B., Tipre, D.R.: Microbial technology for metal recovery from e-waste printed circuit boards. J Bacteriol Mycol Open Access. 6, 241–247 (2018). https://doi.org/10.15406/jbmoa.2018.06.00212

    Article  Google Scholar 

  9. Işıldar, A., Rene, E.R., van Hullebusch, E.D., Lens, P.N.L.: Electronic waste as a secondary source of critical metals: Management and recovery technologies. Resour. Conserv. Recycl. 135, 296–312 (2018). https://doi.org/10.1016/j.resconrec.2017.07.031

    Article  Google Scholar 

  10. Ning, C., Lin, C.S.K., Hui, D.C.W., McKay, G.: Waste Printed Circuit Board (PCB) recycling techniques. Top. Curr. Chem. 375, 1–36 (2017). https://doi.org/10.1007/s41061-017-0118-7

    Article  CAS  Google Scholar 

  11. Benzal, E., Solé, M., Lao, C., Gamisans, X., Dorado, A.D.: Elemental Copper Recovery from e-Wastes Mediated with a Two-Step Bioleaching Process. Waste Biomass Valor 11, 5457–5465 (2020). https://doi.org/10.1007/s12649-020-01040-2

    Article  CAS  Google Scholar 

  12. Minimol, M., Vidya Shetty, K., Saidutta, M.B.: Biohydrometallurgical methods and the processes involved in the bioleaching of WEEE. Environmental Management of Waste Electrical and Electronic Equipment, pp. 89–107. Elsevier, Amsterdam (2021)

    Book  Google Scholar 

  13. Xia, M., Bao, P., Liu, A., Wang, M., Shen, L., Yu, R., Liu, Y., Chen, M., Li, J., Wu, X., Qiu, G., Zeng, W.: Bioleaching of low-grade waste printed circuit boards by mixed fungal culture and its community structure analysis. Resour. Conserv. Recycl. 136, 267–275 (2018). https://doi.org/10.1016/j.resconrec.2018.05.001

    Article  CAS  Google Scholar 

  14. Chen, S., Yang, Y., Liu, C., Dong, F., Liu, B.: Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans. Chemosphere 141, 162–168 (2015). https://doi.org/10.1016/j.chemosphere.2015.06.082

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Shi, L., Dong, H., Reguera, G., Beyenal, H., Lu, A., Liu, J., Yu, H.Q., Fredrickson, J.K.: Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 14, 651–662 (2016). https://doi.org/10.1038/nrmicro.2016.93

    Article  CAS  PubMed  Google Scholar 

  16. Hubau, A., Minier, M., Chagnes, A., Joulian, C., Perez, C., Guezennec, A.G.: Continuous production of a biogenic ferric iron lixiviant for the bioleaching of printed circuit boards (PCBs). Hydrometallurgy 180, 180–191 (2018). https://doi.org/10.1016/j.hydromet.2018.07.001

    Article  CAS  Google Scholar 

  17. Chen, S.Y., Cheng, Y.K.: Effects of sulfur dosage and inoculum size on pilot-scale thermophilic bioleaching of heavy metals from sewage sludge. Chemosphere 234, 346–355 (2019). https://doi.org/10.1016/j.chemosphere.2019.06.084

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Hu, K., Wu, A., Wang, H., Wang, S.: A new heterotrophic strain for bioleaching of low grade complex copper ore. Minerals. 6, 12 (2016). https://doi.org/10.3390/min6010012

    Article  ADS  CAS  Google Scholar 

  19. Shabani, M.A., Irannajad, M., Azadmehr, A.R., Meshkini, M.: Bioleaching of copper oxide ore by Pseudomonas aeruginosa. Int. J. Miner. Metall. Mater. 20, 1130–1133 (2013). https://doi.org/10.1007/s12613-013-0845-x

    Article  CAS  Google Scholar 

  20. Pradhan, J.K., Kumar, S.: Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp. Waste Manag. Res. 30, 1151–1159 (2012). https://doi.org/10.1177/0734242X12437565

    Article  CAS  PubMed  Google Scholar 

  21. Awasthi, A.K., Zeng, X., Li, J.: Integrated bioleaching of copper metal from waste printed circuit board—a comprehensive review of approaches and challenges. Environ. Sci. Pollut. Res. 23, 21141–21156 (2016). https://doi.org/10.1007/s11356-016-7529-9

    Article  CAS  Google Scholar 

  22. Minimol, M., Shetty, V.K., Saidutta, M.B.: Process engineering aspects in bioleaching of metals from electronic waste. In: Handbook of Environmental Chemistry, pp. 27–44. Cham, Springer Science and Business Media Deutschland GmbH (2020)

    Google Scholar 

  23. Rasoulnia, P., Mousavi, S.M.: Maximization of organic acids production by Aspergillus niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments. Bioresour. Technol. 216, 729–736 (2016). https://doi.org/10.1016/j.biortech.2016.05.114

    Article  CAS  PubMed  Google Scholar 

  24. Jagannath, A., Vidya Shetty, K., Saidutta, M.B.: Bioleaching of copper from electronic waste using Acinetobacter sp. Cr B2 in a pulsed plate column operated in batch and sequential batch mode. J. Environ. Chem. Eng. 5, 1599–1607 (2017). https://doi.org/10.1016/j.jece.2017.02.023

    Article  CAS  Google Scholar 

  25. Ilyas, S., Lee, J.C.: Bioleaching of metals from electronic scrap in a stirred tank reactor. Hydrometallurgy 149, 50–62 (2014). https://doi.org/10.1016/j.hydromet.2014.07.004

    Article  CAS  Google Scholar 

  26. Rodrigues, M.L.M., Leão, V.A., Gomes, O., Lambert, F., Bastin, D., Gaydardzhiev, S.: Copper extraction from coarsely ground printed circuit boards using moderate thermophilic bacteria in a rotating-drum reactor. Waste Manag. 41, 148–158 (2015). https://doi.org/10.1016/j.wasman.2015.04.001

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, H.B., Zeng, W.M., Yang, Z.F., Xie, Y.J., Qiu, G.Z.: Bioleaching of chalcopyrite concentrate by a moderately thermophilic culture in a stirred tank reactor. Bioresour. Technol. 100, 515–520 (2009). https://doi.org/10.1016/j.biortech.2008.06.033

    Article  CAS  PubMed  Google Scholar 

  28. Andrews, G.: Fluidized-bed bioreactors. Biotechnol. Genet. Eng. Rev. 6, 151–178 (1988). https://doi.org/10.1080/02648725.1988.10647847

    Article  CAS  Google Scholar 

  29. Zhong, J.J.: Bioreactor Engineering. Elsevier, Amsterdam (2011)

    Google Scholar 

  30. Qureshi, N., Annous, B.A., Ezeji, T.C., Karcher, P., Maddox, I.S.: Biofilm reactors for industrial bioconversion process: employing potential of enhanced reaction rates. Microb. Cell Fact. 4, 1–21 (2005). https://doi.org/10.1186/1475-2859-4-24

    Article  CAS  Google Scholar 

  31. Tisa, F., Abdul Raman, A.A., Wan Daud, W.M.A.: Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review. J Environ Manag (2014). https://doi.org/10.1016/j.jenvman.2014.07.032

    Article  Google Scholar 

  32. Soleimani, M., Hosseini, S., Roostaazad, R., Petersen, J., Mousavi, S.M., Vasiri, A.K.: Microbial leaching of a low-grade sphalerite ore using a draft tube fluidized bed bioreactor. Hydrometallurgy 99, 131–136 (2009). https://doi.org/10.1016/j.hydromet.2009.06.006

    Article  CAS  Google Scholar 

  33. Petter, P.M.H., Veit, H.M., Bernardes, A.M.: Evaluation of gold and silver leaching from printed circuit board of cellphones. Waste Manag. 34, 475–482 (2014). https://doi.org/10.1016/j.wasman.2013.10.032

    Article  CAS  PubMed  Google Scholar 

  34. Heydarian, A., Mousavi, S.M., Vakilchap, F., Baniasadi, M.: Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries. J. Power Sources. 378, 19–30 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.009

    Article  ADS  CAS  Google Scholar 

  35. Darby, R.A., Cartwright, S.P., Dilworth, M.V., Bill, R.M.: Which yeast species shall I choose? Saccharomyces cerevisiae versus Pichia pastoris. Methods Mol. Biol. 866, 11–23 (2012). https://doi.org/10.1007/978-1-61779-770-5

    Article  CAS  PubMed  Google Scholar 

  36. Arshadi, M., Mousavi, S.M.: Simultaneous recovery of Ni and Cu from computer-printed circuit boards using bioleaching: statistical evaluation and optimization. Bioresour. Technol. 174, 233–242 (2014). https://doi.org/10.1016/j.biortech.2014.09.140

    Article  CAS  PubMed  Google Scholar 

  37. Jayarathna, C., Halvorsen, B.M.: Experimental and Computational Study of Particle Minimum Fluidization Velocity and Bed Expansion in a Bubbling Fluidized Bed. Group. (2009)

  38. Huilin, L., Yunhua, Z., Ding, J., Gidaspow, D., Wei, L.: Investigation of mixing/segregation of mixture particles in gas-solid fluidized beds. Chem. Eng. Sci. 62, 301–317 (2007). https://doi.org/10.1016/j.ces.2006.08.031

    Article  CAS  Google Scholar 

  39. Rowe, P.N., Nienow, A.W.: Minimum fluidisation velocity of multi-component particle mixtures. Chem. Eng. Sci. 30, 1365–1369 (1975). https://doi.org/10.1016/0009-2509(75)85066-4

    Article  CAS  Google Scholar 

  40. Noda, K., Uchida, S., Makino, T., Kamo, H.: Minimum fluidization velocity of binary mixture of particles with large size ratio. Powder Technol. 46, 149–154 (1986). https://doi.org/10.1016/0032-5910(86)80021-3

    Article  CAS  Google Scholar 

  41. Kunii, D., Levenspiel, O.: High-velocity fluidization. (2013)

  42. Timsina, R., Thapa, R.K., Moldestad, B.M.E., Eikeland, M.S.: Effect of particle size on flow behavior in fluidized beds. Int. J. Energy Prod. Manag. 4, 273–286 (2019). https://doi.org/10.2495/EQ-V4-N4-287-297

    Article  Google Scholar 

  43. Chen, X.Z., Shi, D.P., Gao, X., Luo, Z.H.: A fundamental CFD study of the gas-solid flow field in fluidized bed polymerization reactors. Powder Technol. 205, 276–288 (2011). https://doi.org/10.1016/j.powtec.2010.09.039

    Article  CAS  Google Scholar 

  44. Monazam, E.R., Shadle, L.J., Mei, J.S., Spenik, J.: Identification and characteristics of different flow regimes in a circulating fluidized bed. Powder Technol. 155, 17–25 (2005). https://doi.org/10.1016/j.powtec.2005.03.019

    Article  CAS  Google Scholar 

  45. Birloaga, I., De Michelis, I., Ferella, F., Buzatu, M., Vegliò, F.: Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery. Waste Manag. 33, 935–941 (2013). https://doi.org/10.1016/j.wasman.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  46. Li, J., Wen, J., Guo, Y., An, N., Liang, C., Ge, Z.: Bioleaching of gold from waste printed circuit boards by alkali-tolerant Pseudomonas fluorescens. Hydrometallurgy (2020). https://doi.org/10.1016/j.hydromet.2020.105260

    Article  Google Scholar 

  47. Li, J., Liang, C., Ma, C.: Bioleaching of gold from waste printed circuit boards by Chromobacterium violaceum. J. Mater. Cycles Waste Manag. 17, 529–539 (2015). https://doi.org/10.1007/s10163-014-0276-4

    Article  CAS  Google Scholar 

  48. Xia, M.C., Wang, Y.P., Peng, T.J., Shen, L., Yu, R.L., Liu, Y.D., Chen, M., Li, J.K., Wu, X.L., Zeng, W.M.: Recycling of metals from pretreated waste printed circuit boards effectively in stirred tank reactor by a moderately thermophilic culture. J. Biosci. Bioeng. 123, 714–721 (2017). https://doi.org/10.1016/j.jbiosc.2016.12.017

    Article  CAS  PubMed  Google Scholar 

  49. Safar, C., Castro, C., Donati, E.: Importance of initial interfacial steps during chalcopyrite bioleaching by a thermoacidophilic archaeon. Microorganisms. 8, 1–13 (2020). https://doi.org/10.3390/microorganisms8071009

    Article  CAS  Google Scholar 

  50. Işıldar, A., van de Vossenberg, J., Rene, E.R., van Hullebusch, E.D., Lens, P.N.L.: Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manag. 57, 149–157 (2016). https://doi.org/10.1016/j.wasman.2015.11.033

    Article  CAS  PubMed  Google Scholar 

  51. Benzal, E., Cano, A., Solé, M., Lao-Luque, C., Gamisans, X., Dorado, A.D.: Copper recovery from PCBs by Acidithiobacillus ferrooxidans: toxicity of bioleached metals on biological activity. Waste Biomass Valor 11, 5483–5492 (2020). https://doi.org/10.1007/s12649-020-01036-y

    Article  CAS  Google Scholar 

  52. Chen, S.Y., Wu, J.Q., Sung, S.: Effects of sulfur dosage on continuous bioleaching of heavy metals from contaminated sediment. J. Hazard. Mater. 424, 127257 (2022). https://doi.org/10.1016/j.jhazmat.2021.127257

    Article  CAS  PubMed  Google Scholar 

  53. Sodha, A.B., Tipre, D.R., Dave, S.R.: Optimisation of biohydrometallurgical batch reactor process for copper extraction and recovery from non-pulverized waste printed circuit boards. Hydrometallurgy 191, 105170 (2020). https://doi.org/10.1016/j.hydromet.2019.105170

    Article  CAS  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

Minimol Madhavan: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Writing – Original draft. Vidya Shetty Kodialbail: Conceptualization; Methodology; Project administration; Supervision; Writing – Review & editing. M. B. Saidutta: Conceptualization; Methodology; Project administration; Supervision; Writing – Review & Editing.

Corresponding authors

Correspondence to Vidya Shetty Kodialbail or M. B. Saidutta.

Ethics declarations

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhavan, M., Shetty Kodialbail, V. & Saidutta, M.B. Performance of Fluidized-Bed Bioreactor in Copper Bioleaching from Printed Circuit Boards using Alcaligenes aquatilis. Waste Biomass Valor 15, 1213–1224 (2024). https://doi.org/10.1007/s12649-023-02202-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02202-8

Keywords

Navigation