Skip to main content

Advertisement

Log in

Abstract

Electricals and electronic equipments that have reached its utilization period are disposed by the consumer are considered as e-waste. The categories of e-waste range from household appliances to machines used in offices and consumer goods. The rise in problem is due to scarcity of proper place for disposing the e-wastes. Hence, the wastes are disposed in open landfills by the consumers which lead to direct reaction of the e-waste with the environment. The release of harmful toxins and chemicals by the e-wastes causes hazardous effects on living beings. Several processes are introduced in recycling and recovering the harmful metals present in the electronic equipments. The most important reasons for e-waste recycling are waste removal as well as recovery of valuable materials present in the waste. Developed countries such as USA and UK follow some strict rules and regulations about managing the increasing amount of e-wastes, whereas India still needs to have a rigid law for the e-waste management. Prior recycling and recovering the important metals from electronic wastes, it is crucial to ascertain the amount of the metal present in the e-waste. Plastics followed by metals are the main components found in electronic wastes. Hazardous metals such as copper, lead and cadmium are predominant in almost all kinds of e-wastes. Determination of the components present in the electronic wastes guides for the proper path to be followed for recovering the components from the wastes. The review deals with status of e-waste across the world and methods of recovery and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aksu Z, Kutsal T (1998) Determination of kinetic parameters in the biosorption of copper(II) on Cladophora sp., in a packed bed column reactor. Process Biochem 33(1):7–13

    Article  CAS  Google Scholar 

  • Al-Homaidan AA, Alabdullatif JA, Al-Hazzani AA, Al-Ghanayem AA, Alabbad AF (2015) Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi J Biol Sci 22(6):795–800

    Article  CAS  Google Scholar 

  • Atar N, Eren T, Yola ML, Wang S (2015) A sensitive molecular imprinted surface plasmon resonance nanosensor for selective determination of trace triclosan in wastewater. Sens Actuators B Chem 216:638–644

    Article  CAS  Google Scholar 

  • Bayramoğlu G, Bektaş S, Arıca MY (2003) Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. J Hazard Mater 101(3):285–300

    Article  Google Scholar 

  • Bhat V, Rao P, Patil Y (2012) Development of an integrated model to recover precious metals from electronic scrap-A novel strategy for e-waste management. Procedia Soc Behav Sci 37:397–406

    Article  Google Scholar 

  • Borthakur A, Sinha K (2013) Generation of electronic waste in India: current scenario, dilemmas and stakeholders. Afr J Environ Sci Technol 7(9):899–910

    Google Scholar 

  • Brady D, Duncan JR (1994) Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 41(1):149–154

    Article  CAS  Google Scholar 

  • Brigden K, Labunska I, Santillo D, Johnston P (2008) Chemical contamination at e-waste recycling and disposal sites in Accra and Korforidua, Ghana. http://www.greenpeace.org/raw/content/international/press/reports/chemical-contamination-at-e-wa.pdf

  • Chang JS, Law R, Chang CC (1997) Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water Res 31(7):1651–1658

    Article  CAS  Google Scholar 

  • Chatterjee A, Abraham J (2015) Biosorption capacity of dried spirogyra on heavy metals. Int J ChemTech Res 8(9):387–392

    CAS  Google Scholar 

  • Chatterjee S, Kumar K (2009) Effective electronic waste management and recycling process involving formal and non-formal sectors. Int J Phys Sci 4(13):893–905

    CAS  Google Scholar 

  • Chauhan R, Upadhyay K (2015) Removal of heavy metal from e-waste: a review. IJCS 3(3):15–21

    Google Scholar 

  • Chmielewski AG, Urbański TS, Migdał W (1997) Separation technologies for metals recovery from industrial wastes. Hydrometallurgy 45(3):333–344

    Article  CAS  Google Scholar 

  • Chojnacka K, Chojnacki A, Gorecka H (2005) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59(1):75–84

    Article  CAS  Google Scholar 

  • Coalition SV (1999) Just say no to e-waste: background document on hazards and waste from computers. Accessed Dec 2015

  • Coalition SVT (2001) Poison PC’s and toxic TVs: California’s biggest environmental crisis that you’ve never heard of. Accessed Dec 2015

  • Coalition SV, Network BA (2002) Exporting harm: the high-tech trashing of Asia. The Basel Action Network, Seattle

    Google Scholar 

  • Cui J, Zhang L (2008) Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater 158(2):228–256

    Article  CAS  Google Scholar 

  • Das D, Das N, Mathew L (2010) Kinetics, equilibrium and thermodynamic studies on biosorption of Ag(I) from aqueous solution by macrofungus Pleurotus platypus. J Hazard Mater 184(1):765–774

    Article  CAS  Google Scholar 

  • Dey S, Jana T (2014) E-waste recycling technology patents filed in India—an analysis. J Intellect Prop Rights 19:315–324

    Google Scholar 

  • Dönmez GÇ, Aksu Z, Öztürk A, Kutsal T (1999) A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem 34(9):885–892

    Article  Google Scholar 

  • Ertan B, Eren T, Ermiş İ, Saral H, Atar N, Yola ML (2016) Sensitive analysis of simazine based on platinum nanoparticles on polyoxometalate/multi-walled carbon nanotubes. J Colloid Interface Sci 470:14–21

    Article  CAS  Google Scholar 

  • E-Waste Fact Sheet (2009) Clean up Australia. Accessed Dec 2015

  • Facts and Figure of E-Waste and Recycling (2014) Electronics takeback coalition. http://www.electronicstakeback.com/wp-content/uploads/Facts_and_Figures_on_EWaste_and_Recycling.pdf. Accessed Dec 2015

  • Feng D, Aldrich C (2004) Adsorption of heavy metals by biomaterials derived from the marine alga Ecklonia maxima. Hydrometallurgy 73(1):1–10

    Article  CAS  Google Scholar 

  • Francis AJ (1998) Biotransformation of uranium and other actinides in radioactive wastes. J Alloy Compd 271:78–84

    Article  Google Scholar 

  • Gajendiran A, Abraham J (2015) Mycoadsorption of mercury isolated from mercury contaminated site. Pollut Res J 34(3):535–538

    CAS  Google Scholar 

  • Grant R, Oteng-Ababio M (2012) Mapping the invisible and real “African” economy: urban e-waste circuitry. Urban Geogr 33(1):1–21

    Article  Google Scholar 

  • Green Peace (2009) Greenpeace international. http://www.greenpeace.org/international/en/campaigns/detox/electronics/the-e-waste-problem/where-does-e-waste-end-up/.Accessed Dec 2015

  • Guidelines for Environmentally sound Management of E-waste (As approved vide MoEF letter No. 23-23/2007-HSMD dt. March 12, 2008). Accessed Dec 2015

  • Gupta VK, Eren T, Atar N, Yola ML, Parlak C, Karimi-Maleh H (2015a) CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. J Mol Liq 208:122–129

    Article  Google Scholar 

  • Gupta VK, Yola ML, Eren T, Atar N (2015b) Selective QCM sensor based on atrazine imprinted polymer: its application to wastewater sample. Sens Actuators B Chem 218:215–221

    Article  CAS  Google Scholar 

  • Hoffmann JE (1992) Recovering precious metals from electronic scrap. JOM 44(7):43–48

    Article  CAS  Google Scholar 

  • Ilyas S, Anwar MA, Niazi SB, Ghauri MA (2007) Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy 88(1):180–188

    Article  CAS  Google Scholar 

  • Jun-hui Z, Hang MIN (2009) Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area. J Hazard Mater 165(1):744–750

    Article  Google Scholar 

  • Kahhat R, Kim J, Xu M, Allenby B, Williams E, Zhang P (2008) Exploring e-waste management systems in the United States. Resour Conserv Recycl 52(7):955–964

    Article  Google Scholar 

  • Kavitha AV (2014) Extraction of precious metals from e-waste. J Chem Pharm Sci 974:2115

    Google Scholar 

  • Kay M (2015) The dark side of the digital age: e-waste. Accessed Dec 2015

  • Khaliq A, Rhamdhani MA, Brooks G, Masood S (2009) Metal extraction processes for electronic waste and existing industrial routes: a review and Australian perspective. Resources 3(1):152–179

    Article  Google Scholar 

  • Khetriwal DS, Kraeuchi P, Widmer R (2009) Producer responsibility for e-waste management: key issues for consideration–learning from the Swiss experience. J Environ Manage 90(1):153–165

    Article  Google Scholar 

  • Kogan V (2006) Process for the recovery of precious metals from electronic scrap by hydrometallurgical technique. International Patent WO/2006/013568 (C22B 11/00), WIP Organization

  • Kumar V, Garg R, Rahman Z, Kazmi AA (2011) Sustainability and E-waste management scenario in India. Int J Comput Internet Manage 19:43–1

    Google Scholar 

  • Kwatra S, Pandey S, Sharma S (2014) Understanding public knowledge and awareness on e-waste in an urban setting in India: a case study for Delhi. Manage Environ Qual Int J 25(6):752–765

    Article  Google Scholar 

  • Lamma O, Swamy A (2015) E-waste, and its future challenges in India. Int J Multidiscip Adv Res Trends II(I):12–24

    Google Scholar 

  • Lee JC, Song HT, Yoo JM (2007) Present status of the recycling of waste electrical and electronic equipment in Korea. Resour Conserv Recycl 50(4):380–397

    Article  Google Scholar 

  • Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)-chloride complex. Environ Sci Technol 40(20):6304–6309

    Article  CAS  Google Scholar 

  • Lepawsky J, McNabb C (2010) Mapping international flows of electronic waste. Can Geogr Le 54(2):177–195

    Article  Google Scholar 

  • Leung AO, Luksemburg WJ, Wong AS, Wong MH (2007) Spatial distribution of polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at Guiyu, an electronic waste recycling site in southeast China. Environ Sci Technol 41(8):2730–2737

    Article  CAS  Google Scholar 

  • Liu X, Tanaka M, Matsui Y (2006) Electrical and electronic waste management in China: progress and the barriers to overcome. Waste Manage Res 24(1):92–101

    Article  Google Scholar 

  • Luo C, Liu C, Wang Y, Liu X, Li F, Zhang G, Li X (2011) Heavy metal contamination in soils and vegetables near an e-waste processing site, South China. J Hazard Mater 186(1):481–490

    Article  CAS  Google Scholar 

  • Mark FE, Lehner T (2000) Plastics recovery from waste electrical & electronic equipment in non-ferrous metal processes. Association of plastics manufactures in Europe, pp 1–23. http://depa.fquim.unam.mx/ipm/introd_ing_metymat/mat_apoyo/bal_macro_energia/plastic_recycling.pdf

  • Mata YN, Torres E, Blazquez ML, Ballester A, González FM, Munoz JA (2009) Gold (III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166(2):612–618

    Article  CAS  Google Scholar 

  • Matheickal JT, Yu Q (1999) Biosorption of lead(II) and copper(II) from aqueous solutions by pre-treated biomass of Australian marine algae. Bioresour Technol 69(3):223–229

    Article  CAS  Google Scholar 

  • Mecucci A, Scott K (2002) Leaching and electrochemical recovery of copper, lead and tin from scrap printed circuit boards. J Chem Technol Biotechnol 77(4):449–457

    Article  CAS  Google Scholar 

  • Nebraska Department of Environmental Quality. Waste computers, monitors, and electronics. Accessed Dec 2015

  • Ni HG, Zeng H, Tao S, Zeng EY (2010) Environmental and human exposure to persistent halogenated compounds derived from e-waste in China. Environ Toxicol Chem 29(6):1237–1247

    CAS  Google Scholar 

  • Nichols W (2015) Up to 90% of world’s electronic waste is illegally dumped, says UN. BusinessGreen. Guardian Environment Network. http://www.theguardian.com/environment/2015/may/12/up-to-90-of-worlds-electronic-waste-is-illegally-dumped-says-un

  • Nnaemeka O (2011) Nigerias WEEE market: business opportunity for Finnish SMEs

  • Nnorom IC, Osibanjo O (2008) Overview of electronic waste (e-waste) management practices and legislations, and their poor applications in the developing countries. Resour Conserv Recycl 52(6):843–858

    Article  Google Scholar 

  • Pagnanelli F, Petrangeli Papini M, Toro L, Trifoni M, Veglio F (2000) Biosorption of metal ions on Arthrobacter sp.: biomass characterization and biosorption modeling. Environ Sci Technol 34(13):2773–2778

    Article  CAS  Google Scholar 

  • Park YJ, Fray DJ (2009) Recovery of high purity precious metals from printed circuit boards. J Hazard Mater 164(2):1152–1158

    Article  CAS  Google Scholar 

  • Patel S, Kasture A (2014) E (electronic) waste management using biological systems-overview. Int J Curr Microbiol Appl Sci 3(7):495–504

    Google Scholar 

  • Patil Y, Bhat V, Rao P (2014) Management of electronic waste by employing combined technological strategies. Glob J Finance Manag 6(6):545–550

    Google Scholar 

  • Pinto VN (2008) E-waste hazard: the impending challenge. Indian J Occup Environ Med 12(2):65

    Article  Google Scholar 

  • Puranik PR, Modak JM, Paknikar KM (1999) A comparative study of the mass transfer kinetics of metal biosorption by microbial biomass. Hydrometallurgy 52(2):189–197

    Article  CAS  Google Scholar 

  • Quinet P, Proost J, Van Lierde A (2005) Recovery of precious metals from electronic scrap by hydrometallurgical processing routes. Miner Metall Process 22(1):17–22

    CAS  Google Scholar 

  • Rajesh V, Kumar AS, Rajesh N (2014) Biosorption of cadmium using a novel bacterium isolated from an electronic industry effluent. Chem Eng J 235:176–185

    Article  Google Scholar 

  • Ramachandra TV, Saira VK (2004) Environmentally sound options for waste management. Envis J Hum Settl 5:1–10

    Google Scholar 

  • Rao LN, Prabhakar G (2011) Removal of heavy metals by biosorption-an overall review. J Eng Res Stud 2(4):17–22

    Google Scholar 

  • Realff MJ, Raymond M, Ammons JC (2004) E-waste: an opportunity. Mater Today 7(1):40–45

    CAS  Google Scholar 

  • Reith F, Etschmann B, Grosse C, Moors H, Benotmane MA, Monsieurs P, Grass G, Doonan C, Vogt S, Lai B, Martinez-Criado G (2009) Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Natl Acad Sci 106(42):17757–17762

    Article  CAS  Google Scholar 

  • Schluep M, Hagelueken C, Kuehr R, Magalini F, Maurer C, Meskers C, Mueller E, Wang F (2009) Sustainable innovation and technology transfer industrial sector studies: recycling—from e-waste to resources. United Nations Environment Programme & United Nations University, Bonn

    Google Scholar 

  • Schluep M, Terekhova T, Manhart A, Müller E, Rochat D, Osibanjo O (2012) Where are WEEE in Africa? In: Electronics goes green 2012+(EGG). IEEE, pp 1–6

  • Schroeder H (2013) E-wastes management in Canada. WordPress.com. https://schroederschroederinc.files.wordpress.com/2013/02/e-waste-management-white-paper.pdf. Accessed Dec 2015

  • Secretariat RS (2011) E-waste in India. India Research Unit (Larrdis), Rajya Sabha Secretariat, New Delhi

    Google Scholar 

  • Sheng PP, Etsell TH (2007) Recovery of gold from computer circuit board scrap using aqua regia. Waste Manage Res 25(4):380–383

    Article  CAS  Google Scholar 

  • Singh RP, Kumar SS (2013) India: a matter of electronic waste; the government initiatives. J Bus Manag Soc Sci Res 2(4):15–20

    Google Scholar 

  • Sinha-Khetriwal D, Kraeuchi P, Schwaninger M (2005) A comparison of electronic waste recycling in Switzerland and in India. Environ Impact Assess Rev 25(5):492–504

    Article  Google Scholar 

  • Stephen JR, Macnaughtont SJ (1999) Developments in terrestrial bacterial remediation of metals. Curr Opin Biotechnol 10(3):230–233

    Article  CAS  Google Scholar 

  • Sthiannopkao S, Wong MH (2013) Handling e-waste in developed and developing countries: initiatives, practices, and consequences. Sci Total Environ 463:1147–1153

    Article  Google Scholar 

  • Terazono A, Murakami S, Abe N, Inanc B, Moriguchi Y, Sakai SI, Kojima M, Yoshida A, Li J, Yang J, Wong MH (2006) Current status and research on E-waste issues in Asia. J Mater Cycles Waste Manage 8(1):1–2

    Article  Google Scholar 

  • Tsekova K, Ianis M, Dencheva V, Ganeva S (2007) Biosorption of binary mixtures of copper and cobalt by Penicillium brevicompactum. Zeitschriftfür Naturforschung C 62(3–4):261–264

    CAS  Google Scholar 

  • Tyagi A (2013) Science reporter. http://nopr.niscair.res.in/bitstream/123456789/18019/1/SR%2050(5)%208-14.pdf. Accessed Dec 2015

  • UNEP (United Nations Environment Programme) (2007) ‘E-waste volume-I (inventory assessment manual). www.unep.or.jp/ietc/Publications/spc/EWasteManual_Vol1.pdf

  • U.S. Environmental Protection Agency. Wastes - Resource Conservation - Common Wastes & Materials - eCycling. Accessed Dec 2015

  • Vats MC, Singh SK (2014) Status of E-waste in India—a review. Transportation 3(10):16917–16931

    Google Scholar 

  • Veit HM, Bernardes AM, Ferreira JZ, Tenório JA, de FragaMalfatti C (2006) Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy. J Hazard Mater 137(3):1704–1709

    Article  CAS  Google Scholar 

  • Vimala R, Das N (2009) Biosorption of cadmium(II) and lead(II) from aqueous solutions using mushrooms: a comparative study. J Hazard Mater 168(1):376–382

    Article  CAS  Google Scholar 

  • Vimala R, Das N (2011) Mechanism of Cd(II) adsorption by macrofungus Pleurotus platypus. J Environ Sci 23(2):288–293

    Article  CAS  Google Scholar 

  • Volesky B (1990) Removal and recovery of heavy metals by biosorption. CRC Press, Boca Raton

    Google Scholar 

  • Wath SB, Dutt PS, Chakrabarti T (2011) E-waste scenario in India, its management and implications. Environ Monit Assess 172(1–4):249–262

    Article  Google Scholar 

  • Widmer R, Oswald-Krapf H, Sinha-Khetriwal D, Schnellmann M, Böni H (2005) Global perspectives on e-waste. Environ Impact Assess Rev 25(5):436–458

    Article  Google Scholar 

  • Willner J (2012) Leaching of selected heavy metals from electronic waste in the presence of the At. ferrooxidans bacteria. J Achiev Mater Manuf Eng 55(2):860–863

    Google Scholar 

  • Wooddell WD (2014) E-Waste. GeoPedia. National Geographic. http://ngm.nationalgeographic.com/geopedia/E-Waste. Accessed Dec 2015

  • Yilmaz EI (2003) Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Res Microbiol 154(6):409–415

    Article  CAS  Google Scholar 

  • Yola ML, Eren T, İlkimen H, Atar N, Yenikaya C (2014a) A sensitive voltammetric sensor for determination of Cd(II) in human plasma. J Mol Liq 197:58–64

    Article  CAS  Google Scholar 

  • Yola ML, Eren T, Atar N (2014b) A novel efficient photocatalyst based on TiO2 nanoparticles involved boron enrichment waste for photocatalytic degradation of atrazine. Chem Eng J 250:288–294

    Article  CAS  Google Scholar 

  • Yola ML, Atar N, Eren T, Karimi-Maleh H, Wang S (2015) Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid. RSC Adv 5(81):65953–65962

    Article  CAS  Google Scholar 

  • Zhang JH, Min H (2010) Characterization of a multimetal resistant Burkholderia fungorum isolated from an e-waste recycling area for its potential in Cd sequestration. World J Microbiol Biotechnol 26(2):371–374

    Article  Google Scholar 

  • Zhou P, Zheng Z, Tie J (2005) Technological process for extracting gold, silver and palladium from electronic industry waste. Chinese Patent, CN1603432A (C22B 11/00)

Download references

Acknowledgments

The authors are greatly indebted to Vellore Institute of Technology, Vellore, for their help and support for extending necessary facilities for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Abraham.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, A., Abraham, J. Efficient management of e-wastes. Int. J. Environ. Sci. Technol. 14, 211–222 (2017). https://doi.org/10.1007/s13762-016-1072-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1072-6

Keywords

Navigation