Skip to main content

Advertisement

Log in

Integrated bioleaching of copper metal from waste printed circuit board—a comprehensive review of approaches and challenges

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Waste electrical and electronic equipment (e-waste) is the most rapidly growing waste stream in the world, and the majority of the residues are openly disposed of in developing countries. Waste printed circuit boards (WPCBs) make up the major portion of e-waste, and their informal recycling can cause environmental pollution and health risks. Furthermore, the conventional disposal and recycling techniques—mechanical treatments used to recover valuable metals, including copper—are not sustainable in the long term. Chemical leaching is rapid and efficient but causes secondary pollution. Bioleaching is a promising approach, eco-friendly and economically feasible, but it is slower process. This review considers the recycling potential of microbes and suggests an integrated bioleaching approach for Cu extraction and recovery from WPCBs. The proposed recycling system should be more effective, efficient and both technically and economically feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abhilash, Pandey PBD (2013) Microbially assisted leaching of uranium—a review. Miner Process Extr Metall Rev 34(2):81–113

  • Adhapure NN, Dhakephalkar PK, Dhakephalkar AP, Tembhurkar VR, Rajgure AV, Deshmukh AM (2014) Use of large pieces of printed circuit boards for bioleaching to avoid precipitate contamination problem’ and to simplify overall metal recovery. MethodsX 1:181–186

    Article  CAS  Google Scholar 

  • Adhapure NN, Waghmare SS, Hamde VS, Deshmukh AM (2013) Metal solubilization from powdered printed circuit boards by microbial consortium from bauxite and pyrite ores. Appl Biochem Microbiol 49(3):256–262

    Article  CAS  Google Scholar 

  • Akcil A, Erust C, Gahan CS, Ozgun M, Sahin M, Tuncuk A (2015) Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants—a review. Waste Manag 45:258–271

    Article  CAS  Google Scholar 

  • Anjum F, Bhatti HN, Asgher M, Shahid M (2010) Leaching of metal ions from black shale by organic acids produced by Aspergillus niger. Appl Clay Sci 47:356–361

    Article  CAS  Google Scholar 

  • Arshadi M, Mousavi SM (2014) Simultaneous recovery of Ni and Cu from computer-printed circuit boards using bioleaching: statistical evaluation and optimization. Bioresour Technol 174:233–242

    Article  CAS  Google Scholar 

  • Arshadi M, Mousavi SM (2015a) Enhancement of simultaneous gold and copper extraction from computer printed circuit boards using Bacillus megaterium. Bioresour Technol 175:315–324

    Article  CAS  Google Scholar 

  • Arshadi M, Mousavi SM (2015b) Multi-objective optimization of heavy metals bioleaching from discarded mobile phone PCBs: simultaneous Cu and Ni recovery using Acidithiobacillus ferrooxidans. Sep Sci Technol 147:210–219

    CAS  Google Scholar 

  • Arwidsson Z, Allard B (2009) Remediation of metal-contaminated soil by organic metabolites from fungi II-metal redistribution. Water Air Soil Pollut 207(1–4):5–18

    Google Scholar 

  • Aston JE, Apel WA, Lee BD, Peyton BM (2010) Effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13. J Hazard Mater 184(1–3):34–41

    Article  CAS  Google Scholar 

  • Awasthi AK, Zeng X, Li J (2016a) Comparative examining and analysis of e-waste recycling in typical developing and developed countries. Procedia Environ Sci 35:676–680

    Article  Google Scholar 

  • Awasthi AK, Zeng X, Li J (2016b) Environmental pollution of electronic waste recycling in India: a critical review. Environ Pollut 211:259–270

    Article  CAS  Google Scholar 

  • Awasthi AK, Zeng X, Li J (2016c) Relationship between electronic waste recycling and human health risk in India: a critical review. Environ Sci Pollut Res 23:11509–11532

    Article  CAS  Google Scholar 

  • Bacher J, Mrotzek A, Wahlstrom M (2015) Mechanical pre-treatment of mobile phones and its effect on the printed circuit assemblies (PCAs). Waste Manag 45:235–245

    Article  CAS  Google Scholar 

  • Bas AD, Deveci H, Yazici EY (2013) Bioleaching of copper from low grade scrap TV circuit boards using mesophilic bacteria. Hydrometallurgy 138:65–70

    Article  CAS  Google Scholar 

  • Behnamfard A, Salarirad MM, Veglio F (2013) Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation. Waste Manag 33:2354–2363

    Article  CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2008) Removal of copper ions by the filamentous fungus, Rhizopus oryzae from aqueous solution. Bioresour Technol 99:3829–3835

    Article  CAS  Google Scholar 

  • Birloaga I, De Michelis I, Ferella F, Buzatu M, Veglio F (2013) Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery. Waste Manag 33(4):935–941

    Article  CAS  Google Scholar 

  • Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS (Federation of European Microbiological Societies) Microbiol Rev 20(3–4):591–604

    CAS  Google Scholar 

  • Brandl H, Faramarzi MA (2006) Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Particuology 4:93–97

    Article  CAS  Google Scholar 

  • Brandl H, Bosshard R, Wegmann M (2001) Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 59(2–3):319–326

    Article  CAS  Google Scholar 

  • Brandl H, Lehmann S, Faramarzi MA, Martinelli D (2008) Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy 94:14–17

    Article  CAS  Google Scholar 

  • Calgaro CO, Schlemmer DF, da Silva MD, Maziero EV, Tanabe EH, Bertuol DA (2015) Fast copper extraction from printed circuit boards using supercritical carbon dioxide. Waste Manag 45:289–297

    Article  CAS  Google Scholar 

  • Cheikh M, Magnin JP, Gondrexon N, Willisn J, Hassen A (2010) Zinc and lead leaching from contaminated industrial waste sludges using coupled processes. Environ Technol 31(14):1577–1585

    Article  CAS  Google Scholar 

  • Chen SY, Huang QY (2014) Heavy metals recovery from printed circuit board industry wastewater sludge by thermophilic bioleaching process. J Chem Technol Biotechnol 89:158–164

    Article  CAS  Google Scholar 

  • Chen MJ, Huang JX, Ogunseitan OA, Zhu NM, Wang YM (2015a) Comparative study on copper leaching from waste printed circuit boards by typical ionic liquid acids. Waste Manag 41:142–147

    Article  CAS  Google Scholar 

  • Chen M, Zhang S, Huang J, Chen H (2015b) Lead during the leaching process of copper from waste printed circuit boards by five typical ionic liquid acids. J Clean Product 95(0):142–147

    Article  CAS  Google Scholar 

  • Chenglong Z, Jingwei W, Jianfeng B (2010a) Production of high purity copper from bioleaching solutions of waste printed circuit boards. International Conference on Digital Manufacturing and Automation. 1–4.

  • Chenglong Z., Yujia C, Jingwei W, Jianfeng B, Yuan Z, Wenjie W (2010b) Recovery of copper from bioleaching solutions of waste printed circuit boards waste by ion exchange. International Conference on Digital Manufacturing and Automation. 1–3.

  • Chi X, Streicher-Porte M, Wang MYL, Reuter MA (2011) Informal electronic waste recycling: a sector review with special focus on China. Waste Manag 31(4):731–742

    Article  Google Scholar 

  • Choi M, Cho K, Kim D, Kim D (2004) Microbial recovery of copper from printed circuit boards of waste computer by Acidithiobacillus ferrooxidans. J Environ Sci Health, PartA, Environ Sci Eng Toxic Hazard Subst Control A39(11–12):2973–2982

    Article  CAS  Google Scholar 

  • Chris Y, Yuan H, Zhang C, McKenna G, Korzeniewski C, Li J (2003) Experimental studies on cryogenic recycling of printed circuit board. J Adv Manuf Technol 34:657–666

  • Cojocaru C, Diaconu M, Cretescu I, Savic J, Vasic V (2009) Biosorption of copper(II) ions from aqua solutions using dried yeast biomass. Colloid Surf 335:181–188

    Article  CAS  Google Scholar 

  • Dobbin PS, Powell AK, McEwan AG, Richardson DJ (1995) The influence of chelating agents upon the dissimilatory reduction of Fe(III) by Shewanella putrefaciens. BioMetal 8(2):163–173

    Article  CAS  Google Scholar 

  • Duan HB, Hou K, Li JH, Zhu XD (2011) Examining the technology acceptance for dismantling of waste printed circuit boards in light of recycling and environmental concerns. J Environ Manag 92(3):392–399

    Article  CAS  Google Scholar 

  • EPA (2011) EPA—Environmental Protection Agency, USA. Statistics on the Management of Used and End-of-Life Electronics. <http://www.epa.gov/wastes/conserve/materials/ecycling/manage.htm>.

  • Erust C, Akcil A, Gahan CS, Tuncuk A, Deveci H (2013) Biohydrometallurgy of secondary metal resources: a potential alternative approach for metal recovery. J Chem Technol Biotechnol 88(12):2115–2132

    Article  CAS  Google Scholar 

  • Ferrera A, Bunk B, Sproer C, Biedendieck R, Valdes N, Jahn M, Jahn D, Orellana O, Gloria L (2016) Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1. J Biotechnol 222:21–22

    Article  CAS  Google Scholar 

  • Flandinet L, Tedjar F, Ghetta V, Fouletier J (2012) Metals recovering from waste printed circuit boards (WPCBs) using molten salts. J Hazard Mater 213:485–490

    Article  CAS  Google Scholar 

  • Fozia A, Bhatti HN, Asgher M, Muhammad S (2010) Leaching of metal ions from black shale by organic acids produced by Aspergillus niger. Appl Clay Sci 47:356–361

    Article  CAS  Google Scholar 

  • Franz A, Burgstaller W, Schinner F (1991) Leaching with Penicillium simplicissimum: influence of metals and buffers on proton extrusion and citric acid production. Appl Environ Microbiol 57(3):769–774

    CAS  Google Scholar 

  • Gadd GM (1986) Fungal response towards heavy metals. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. Academic Press, London, pp. 83–110

  • Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60

    Article  CAS  Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Advan Microbial Physiol 41:47–92

    Article  CAS  Google Scholar 

  • Gadd GM (2001) Metal transformations. G.M. Gadd (Ed.), Fungi in bioremediation, Cambridge University Press, Cambridge. 359–382.

  • Gao S, Luo X, NieEr Z, Zheng Z, Chen G, Feng J (2010) Role of Acidithiobacillus ferrooxidans in bioleaching of copper. Chin J Environ Engg 4(3):677–682 In Chinese

    CAS  Google Scholar 

  • Gerayeli F, Ghojavand F, Mousavi SM, Yaghmaei S, Amiri F (2013) Screening and optimization of effective parameters in biological extraction of heavy metals from refinery spent catalysts using a thermophilic bacterium. Sep Purif Technol 118:151–161

    Article  CAS  Google Scholar 

  • Ghassa S, Boruomand Z, Abdollahi H, Moradian M, Akcil A (2014) Bioleaching of high grade Zn-Pb bearing ore by mixed moderate thermophilic microorganisms. Sep Purifi Technol 136:241–249

    Article  CAS  Google Scholar 

  • Gu W, Bai J, Dai J, Zhang C, Yuan W, Wang J, Wang P, Xin Z (2014) Characterization of extreme Acidophile Bacteria (Acidithiobacillus ferrooxidans) bioleaching copper from flexible PCB by ICP-AES. J Spectroscopy Article ID 269351, 8. doi: 10.1155/2014/269351

  • Guo J, Guo J, Xu Z (2009) Recycling of non-metallic fractions from waste printed boards: a review. J Hazard Mater 168(2–3):567–590

    Article  CAS  Google Scholar 

  • Hadi PM, Ning C, Ouyang WY, Xu M, Lin CSK, McKay G (2015) Toward environmentally-benign utilization of nonmetallic fraction of waste printed circuit boards as modifier and precursor. Waste Manag 35:236–246

    Article  Google Scholar 

  • Hageluken C (2006) Recycling of electronic scrap at Umicore precious metals refining. Acta Metall Slovaca 12:111–120

    Google Scholar 

  • Hageluken C, Meskers CEM (2008) Mining our computers-opportunities and challenges to recover scarce and valuable metals from end-of-life electronic device. Electron Goes Green Conf:585–590

  • Hahn MS, Willscher S, Straube G (1993) Copper leaching from industrial wastes by heterotrophic microorganisms. In: Torma AE, Wey JE, Lakshamanan VL (eds) Biohydrometallurgical technologies. The Minerals, Metals & Material Society, Warrendale, pp. 99–108

    Google Scholar 

  • He YC, Xu ZM (2015) Recycling gold and copper from waste printed circuit boards using chlorination process. Rsc Advan 5(12):8957–8964

    Article  CAS  Google Scholar 

  • Herat S, Agamuthu P (2012) E-waste: a problem or an opportunity? Review of issues, challenges and solutions in Asian countries. Waste Manage Res 30(11):1113–1129

    Article  CAS  Google Scholar 

  • Hocheng H, Hong T, Jadhav U (2014) Microbial leaching of waste solder for recovery of metal. Appl Biochem Biotechnol 173(1):193–204

    Article  CAS  Google Scholar 

  • Hong Y, Valix M (2014) Bioleaching of electronic waste using acidophilic sulfur oxidizing bacteria. J Clean Prod 65:465–472

    Article  CAS  Google Scholar 

  • Hong HC, Su C, Jadhav UU (2014) Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant. Chemosphere 117:652–657

    Article  CAS  Google Scholar 

  • Hong KJ, Tokunaga S, Kajiuchi T (2000) Extraction of heavy metals from MSW incinerator fly ashes by chelating agents. J Hazard Mater 75(1):57–73

    Article  CAS  Google Scholar 

  • Huang ZY, Xie FC, Ma Y (2011) Ultrasonic recovery of copper and iron through the simultaneous utilization of printed circuit boards (PCB) spent acid etching solution and PCB waste sludge. J Hazard Mater 185(1):155–161

    Article  CAS  Google Scholar 

  • Ilyas S, Anwar MA, Niazi SB, Ghauri MA (2007) Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy 88:180–188

    Article  CAS  Google Scholar 

  • Ilyas S, Lee JC, Chi RA (2013) Bioleaching of metals from electronic scrap and its potential for commercial exploitation. Hydrometallurgy 131–132:138–143

    Article  CAS  Google Scholar 

  • Ilyas S, Lee J, Kim BS (2014) Bioremoval of heavy metals from recycling industry electronic waste by a consortium of moderate thermophiles: process development and optimization. J Clean Prod 70:194–202

    Article  CAS  Google Scholar 

  • Ilyas S, Ruan C, Bhatti HN, Ghauri MA, Anwar MA (2010) Column bioleaching of metals from electronic scrap. Hydrometallurgy 101:135–140

    Article  CAS  Google Scholar 

  • Isildar A, van de Vossenberg J, Rene ER, van Hullebusch ED, Lens PNL (2015) Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manag. doi:10.1016/j.wasman.2015.11.033

    Google Scholar 

  • Jadhav U, Hocheng H (2014) Use of Aspergillus niger 34770 culture supernatant for tin metal removal. Corrosion Sci 82:248–254

    Article  CAS  Google Scholar 

  • Jadhav U, Hocheng H (2015) Enzymatic bioleaching of metals from printed circuit board. Clean Techn Environ Policy 17:947–956

    Article  CAS  Google Scholar 

  • Jaeryeong L, Youngjin K, Jaechun L (2012) Disassembly and physical separation of electric/electronic components layered in printed circuit boards (PCB). J Hazard Mater 241-242:387–394.

  • Jaiswal A, Samuel C, Patel BS, Kumar M (2015) Go green with WEEE: eco-friendly approach for handling e-waste. Proce Comp Sci 46:1317–1324

    Article  Google Scholar 

  • Jujun R, Zheng J, Jian H, Jianwen Z (2015) A novel designed bioreactor for recovering precious metals from waste printed circuit boards. Sci Rep 5:13481. doi:10.1038/srep13481

    Article  CAS  Google Scholar 

  • Karwowska E, Andrzejewska-Morzuch D, Lebkowska M, Tabernacka A, Wojtkowska M, Telepko A, Konarzewska A (2014) Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria. J Hazard Mater 264:203–210

    Article  CAS  Google Scholar 

  • Kolencik M, Urik M, Cernansky S, Molnarova M, Matus P (2013) Leaching of zinc, cadmium, lead and copper from electronic scrap using organic acid and the Aspergillus niger strain. Fresenius Environ Bull 22(12):3673–3679

    CAS  Google Scholar 

  • Lee J, Pandey B (2012) Bio-processing of solid wastes and secondary resources for metal extraction—a review. Waste Manag 32:3–18

    Article  CAS  Google Scholar 

  • Li YC (1995) A waste minimization study of a chelated copper complex in waste water treatability and progress analysis. Waste Manag 15(3):209–220

    Article  Google Scholar 

  • Li J, Zeng X, Stevels A (2015a) Ecodesign in consumer electronics: past, present and future. Crit Rev Environ Sci Technol 45(8):840–860

    Article  Google Scholar 

  • Li J, Zeng X, Chen M, Ogunseitan OA, Stevels A (2015b) “Control-alt-delete”: rebooting solutions for the e-waste problem. Environ Sci Technol 49(12):7095–7108

    Article  CAS  Google Scholar 

  • Li D, Bai J, Zhang C, Dai J, Yuan W, Deng M, Mao W, Wang J (2015c) Harmless research of printed circuit board sludge by Acidithiobacillus ferrooxidans. China Environ Sci 35(7):2079–2086 In Chinese

    CAS  Google Scholar 

  • Li J, Duan H, Yu K, Wang S (2010) Interfacial and mechanical property analysis of waste printed circuit boards subject to thermal shock. J Air Waste Manage Assoc 60(2):229–236

    Article  CAS  Google Scholar 

  • Li S, Zhong H, Hu Y, Zhao J, He Z, Gu G (2014) Bioleaching of a low-grade nickel–copper sulfide by mixture of four thermophiles. Bioresour Technol 153:300–306

    Article  CAS  Google Scholar 

  • Liang G, Mob Y, Zhou Q (2010) Novel strategies of bioleaching metals from printed circuit boards (PCBs) in mixed cultivation of two acidophiles. Enzyme Microbial Technol 47:322–326

    Article  CAS  Google Scholar 

  • Liang G, Tang J, Liu W, Zhou Q (2013) Optimizing mixed culture of two acidophiles to improve copper recovery from printed circuit boards (PCBs). J Hazard Mater 250-251:238–245

    Article  CAS  Google Scholar 

  • Liu YG, Zhou M, Zeng GM, Xin W, Li X, Fan T, Xu WH (2008) Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: effects of substrate concentration. Bioresour Technol 99:4124–4129

    Article  CAS  Google Scholar 

  • Madrigal-Arias, JE, Argumedo-Delira R, Alarcon A, Mendoza-Lopez MR, Garcia-Barradas O, Cruz-Sanchez JS, Ferrera-Cerrato R, Jimenez-Fernandez M (2015) Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer gold finger motherboards by two Aspergillus niger strains. Braz J Microbiol 46 (3): Sao Paulo July/Sept.

  • Makinen J, Bacher J, Kaartinen T, Wahlstrom M, Salminen J (2015) The effect of flotation and parameters for bioleaching of printed circuit boards. Minerals Engg 75:26–31

    Article  CAS  Google Scholar 

  • Marhual NP, Pradhan N, Kar RN, Sukla LB, Mishra B (2008) Differential bioleaching of copper by mesophilic and moderately thermophilic acidophilic consortium enriched from same copper mine water sample. Bioresour Technol 99(17):8331–8336

    Article  CAS  Google Scholar 

  • Marques AC, Cabrera JM, Malfatti CD (2013) Printed circuit boards: a review on the perspective of sustainability. J Environ Manag 131:298–306

    Article  CAS  Google Scholar 

  • Mishra D, Rhee YH (2014) Microbial leaching of metals from solid industrial wastes. J J Microbiol 52(1):1–7

    Article  CAS  Google Scholar 

  • Mishra D, Kim DJ, Ahn JG, Rhee YH (2005) Bioleaching: a microbial process of metal recovery; a review. Metal Material Inter 11(3):249–256

    Article  CAS  Google Scholar 

  • Mishra D, Kim DJ, Ralph DE, Ahn JG, Rhee YH (2008) Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manag 28(2):333–338

    Article  CAS  Google Scholar 

  • Mulligan CN, Kamali M (2003) Bioleaching of copper and other metals from low-grade oxidized mining ores by Aspergillus niger. J Chem Technol Biotechnol 78(5):497–503

    Article  CAS  Google Scholar 

  • Natarajan G, Ting YP (2014) Pretreatment of e-waste and mutation of alkali tolerant cyanogenic bacteria promote gold biorecovery. Bioresour Technol 152:80–85

    Article  CAS  Google Scholar 

  • Nie HCY, Zhu N, Wu P, Zhang T, Zhang Y, Xing Y (2015) Isolation of Acidithiobacillus ferrooxidans strain Z1 and its mechanism of bioleaching copper from waste printed circuit boards. J Chem Technol Biotechnol 90:714–721

    Article  CAS  Google Scholar 

  • Ortuno N, Conesa JA, Molto J, Font R (2014) Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal. Sci Total Environ 499:27–35

    Article  CAS  Google Scholar 

  • Pant D, Joshi D, Upreti MK, Kotnala RK (2012) Chemical and biological extraction of metals present in E waste: a hybrid technology. Waste Manag 32(5):979–990

    Article  CAS  Google Scholar 

  • Park YJ, Fray DJ (2009) Recovery of high purity precious metals from printed circuit boards. J Hazard Mater 164(2–3):1152–1158

    Article  CAS  Google Scholar 

  • Pradhan JK, Kumar S (2012) Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp. Waste Manage Res 30(11):1151–1159

    Article  CAS  Google Scholar 

  • Rastegar SO, Mousavi SM, Shojaosadati SA (2014) Cr and Ni recovery during bioleaching of dewatered metal-plating sludge using Acidithiobacillus ferrooxidans. Bioresour Technol 167:61–68

    Article  CAS  Google Scholar 

  • Ren WX, Li PJ, Geng Y, Li XJ (2009) Biological leaching of heavy metals from a contaminated soil by Aspergillus niger. J Hazard Mater 167(1–3):164–169

    Article  CAS  Google Scholar 

  • Ren ZF, Xiao X, Chen DY, Bi XH, Huang B, Liu M, Hu JF, Peng PA, Sheng GY, Fu JM (2014) Halogenated organic pollutants in particulate matters emitted during recycling of waste printed circuit boards in a typical e-waste workshop of Southern China. Chemosphere 94:143–150

    Article  CAS  Google Scholar 

  • Rodrigues MLM, Leao VA, Gomes O, Lambert F, Bastin D, Gaydardzhiev S (2015) Copper extraction from coarsely ground printed circuit boards using moderate thermophilic bacteria in a rotating-drum reactor. Waste Manag 41:148–158

    Article  CAS  Google Scholar 

  • Ruan JJ, Zhu XJ, Qian YM, Hu J (2014) A new strain for recovering precious metals from waste printed circuit boards. Waste Manag 34(5):901–907

    Article  CAS  Google Scholar 

  • Sarpong GO, Asare KO, Tien M (2011) Fungal pretreatment of sulfides in refractory gold ores. Miner Engg 24(6):499–504

    Article  CAS  Google Scholar 

  • Sarvar M, Salarirad MM, Shabani MA (2015) Characterization and mechanical separation of metals from computer printed circuit boards (PCBs) based on mineral processing methods. Waste Manag 45:246–257

    Article  CAS  Google Scholar 

  • Satroutdinov AD, Dedyukhina EG, Chistyakova TI, Witschel M, Minkevich IG, Eroshin VK, Egli T (2000) Degradation of metal–EDTA complexes by resting cells of the bacterial strain DSM 9103. Environ Sci Technol 34(9):1715–1720

    Article  CAS  Google Scholar 

  • Schinner F, Burgstaller W (1989) Extraction of zinc from industrial-waste by a Penicillium sp. Appl Environ Microbiol 55(5):1153–1156

    CAS  Google Scholar 

  • Schluep M, Hagelueken C, Kuehr R, Magalini F, Maurer C, Meskers C, Mueller E, Wang F (2009) Sustainable innovation and technology transfer industrial sector studies. Recycling from e-waste to resources. United Nations Environment Programme and United Nations University, pp. 120.

  • Shah MB, Tipre DR, Dave SR (2014) Chemical and biological processes for multi-metal extraction from waste printed circuit boards of computers and mobile phones. Waste Manage Res 32(11):1134–1141

    Article  CAS  Google Scholar 

  • Shah MB, Tipre DR, Purohit MS, Dave SR (2015) Development of two-step process for enhanced biorecovery of Cu-Zn-Ni from computer printed circuit boards. J Biosci Bioengg 120(2):167–173

    Article  CAS  Google Scholar 

  • Silva RA, Park J, Lee E, Park J, Choi SQ, Kim H (2015) Influence of bacterial adhesion on copper extraction from printed circuit boards. Sep Purif Technol 143:169–176

    Article  CAS  Google Scholar 

  • Sohnle PG, Hahn BL, Karmarkar R (2001) Effect of metals on Candida albicans growth in the presence of chemical chelators and human abscess fluid. J Lab Clin Medi 137(4):284–289

    Article  CAS  Google Scholar 

  • Sthiannopkao S, Wong MH (2013) Handling e-waste in developed and developing countries: initiatives, practices, and consequences. Sci Total Environ 463-464:1147–1153

    Article  CAS  Google Scholar 

  • Suzuki I (2001) Microbial leaching of metals from sulfide minerals. Biotechnol Advanc 19(2):119–132

    Article  CAS  Google Scholar 

  • Tao Y, Xu Z, Wen J, Yang L (2009) Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy 97(1–2):29–32

    Google Scholar 

  • Tributsch H (2001) Direct versus indirect bioleaching. Hydrometallurgy 59(2–3):177–185

    Article  CAS  Google Scholar 

  • Tsekova K, Todorova D, Dencheva V, Ganeva S (2010) Biosorption of copper (II) and cadmium(II) from aqueous solutions by free and immobilized biomass of Aspergillus niger. Bioresour Technol 101:1727–1731

    Article  CAS  Google Scholar 

  • Tsydenova O, Bengtsson M (2011) Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manag 31(1):45–58

    Article  CAS  Google Scholar 

  • Tu YJ, Chang CK, You CF, Lou JC (2010) Recycling of Cu powder from industrial sludge by combined acid leaching, chemical exchange and ferrite process. J Hazard Mater 181(1–3):981–985

    Article  CAS  Google Scholar 

  • UNEP (2013) Metal recycling: opportunities, limits, infrastructure. In: Reuter, M.A., Hudson, C, van Schaik A, Heiskanen K, Meskers C, Hagelüken C. (Eds.), A report of the Working Group on the Global Metal Flows to the International Resource Panel. ISBN: 978–92–807-3267-2. <http://www.unep.org/resourcepanel/Portals/24102/PDFs/Metal_Recycling_Full_Report.pdf>

  • Valix M, Tang JY, Cheung WH (2001b) The effects of mineralogy on the biological leaching of nickel laterite ores. Miner Engg 14(12):1629–1635

    Article  CAS  Google Scholar 

  • Valix M, Tang JY, Malik R (2001a) Heavy metal tolerance of fungi. Miner Engg 14(5):499–505

    Article  CAS  Google Scholar 

  • Valix M, Usai F, Malik R (2001c) Fungal bio-leaching of low grade laterite ores. Miner Engg 14(2):197–203

    Article  CAS  Google Scholar 

  • Vargas T, Davis-Belmar CS, Carcamo C (2014) Biological and chemical control in copper bioleaching processes: when inoculation would be of any benefit? Hydrometallurgy 150:290–298

    Article  CAS  Google Scholar 

  • Veglio F, Quaresima R, Fornari P, Ubaldini S (2003) Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning. Waste Manag 23:245–252

    Article  CAS  Google Scholar 

  • Veit HM, Bernardes AM, Ferreira JZ, Tenorio JAS, Malfatti CF (2006) Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy. J Hazard Mater 137(3):1704–1709

    Article  CAS  Google Scholar 

  • Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl Microbiol Biotechnol 97(17):7529–7541

    Article  CAS  Google Scholar 

  • Wang J, Bai J, Xu J, Liang B (2009) Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. J Hazard Mater 172:1100–1105

    Article  CAS  Google Scholar 

  • Wang F, Huisman J, Meskers CEM, Schluep M, Ab S, Hageltian C (2012) The best-of-2-worlds philosophy: developing local dismantling and global infrastructure network for sustainable e-waste treatment in emerging economies. Waste Manag 32:2134–2146

    Article  Google Scholar 

  • Wang Z, Hall P, Miles NJ, Wu T, Lambert P, Gu F (2015a) The application of pneumatic jigging in the recovery of metallic fraction from shredded printed wiring boards. Waste Manage Res 33(9):785–793

    Article  CAS  Google Scholar 

  • Wang FF, Zhao Y, Zhang T, Duan C, Wan L (2015b) Mineralogical analysis of dust collected from typical recycling line of waste printed circuit boards. Waste Manag 43:434–441

    Article  CAS  Google Scholar 

  • Wasay SA, Barrington SF, Tokunaga S (1998) Remediation of soils polluted by heavy metals using salts of organic acids and chelating agents. Environ Technol 19(4):369–379

    Article  CAS  Google Scholar 

  • Wei Z, Chen C, Yuguang W, Hongbo Z (2010) Leaching of metals from waste printed circuit boards using Acidithiobacillus thiooxidans. J Southwest Univer Nat Sci Ed 32(11):158–162 In Chinese

    Google Scholar 

  • Willner J, Fornalczyk A (2013) Extraction of metals from electronic waste by bacterial leaching. Environ Prot Eng 39:197–208

    CAS  Google Scholar 

  • Wong JWC, Zhou J, Kurade MB, Murugesan K (2015) Influence of ferrous ions on extracellular polymeric substances content and sludge dewaterability during bioleaching. Bioresour Technol 179:78–83

    Article  CAS  Google Scholar 

  • Wu S, Li D, Jiang P (2008) Bioleaching of copper from wasted printed circuit board by indigenous sulfur-oxidizing bacteria. Environ Pollut Control 30(11):27–30,34

    CAS  Google Scholar 

  • Xiang Y, Wu PX, Zhu NW, Zhang T, Liu W, Wu JH, Li P (2010) Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. J Hazard Mater 184(1–3):812–818

    Article  CAS  Google Scholar 

  • Xu YQ, Liu JS (2015) Recent developments and perspective of the spent waste printed circuit boards. Waste Manage Res 33(5):392–400

    Article  CAS  Google Scholar 

  • Xue MQ, Kendall A, Xu ZM, Schoenung JM (2015) Waste management of printed wiring boards: a life cycle assessment of the metals recycling chain from liberation through refining. Environ Sci Technol 49(2):940–947

    Article  CAS  Google Scholar 

  • Yang JP, Xiang D, Wang JS, Duan GH, Zhang HC (2009a) Removal force models for component disassembly from waste printed circuit board. Resour Conserv Recycl 53(8):448–454

    Article  Google Scholar 

  • Yang T, Xu Z, Wen JK, Yang LM (2009b) Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy 97(1–2):29–32

    Article  CAS  Google Scholar 

  • Yang T, Xu Z, Wen J, Yang L (2009c) Bioleaching of copper from printed circuit boards of waste computer by Thiobacillus ferrooxidans. Chinese J Environ Engg 3(5):915–918

    CAS  Google Scholar 

  • Yang Y, Chen S, Chen M, Chen H, Cai Y (2013) Relationship between leaching time and copper recovery from waste printed circuit boards by Thiobacillus ferrooxidans. Chin J Environ Engg 7(6):2322–2326 In Chinese

    CAS  Google Scholar 

  • Yang YK, Chen S, Li SC, Chen MJ, Chen HY, Liu BJ (2014) Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect. J Biotechnol 173:24–30

    Article  CAS  Google Scholar 

  • Yang XY, Moats MS, Miller JD, Wang XM, Shi XC, Xu H (2011) Thiourea-thiocyanate leaching system for gold. Hydrometallurgy 106(1–2):58–63

    Article  CAS  Google Scholar 

  • Yokoyama S, Iji M (1993) Recycling of printed wiring board waste. In: Proceedings of 1993 IEEE/Tsukuba international workshop on advanced robotics, Tsukuba, Japan, 8–9, 55–58.

  • Zeng XL, Li JH, Stevels ALN, Liu LL (2013a) Perspective of electronic waste management in China based on a legislation comparison between China and the EU. J Clean Prod 51:80–87

    Article  Google Scholar 

  • Zeng XL, Li JH, Xie HH, Liu LL (2013b) A novel dismantling process of waste printed circuit boards using water-soluble ionic liquid. Chemosphere 93(7):1288–1294

    Article  CAS  Google Scholar 

  • Zeng X, Song Q, Li J, Yuan W, Duan H, Liu L (2015) Solving e-waste problem using an integrated mobile recycling plant. J Clean Prod 90:55–59

    Article  Google Scholar 

  • Zhang SL, Forssberg E (1999) Intelligent liberation and classification of electronic scrap. Powder Technol 105:295–301

    Article  CAS  Google Scholar 

  • Zhang X, Guan J, Guo Y, Yan X, Yuan H, Xu J, Guo J, Zhou Y, Su R, Guo Z (2015) Selective desoldering separation of tin–lead alloy for dismantling of electronic components from printed circuit boards. ACS Sustain Chem Engg 3(8):1696–1700

    Article  CAS  Google Scholar 

  • Zhao D, Chen S, Wang Z (2012) Research of bio-leaching Cu from printed-circuit board by Acidophilus strains. Environ Sci Technol 35(10):166–170

    Google Scholar 

  • Zhou L, Xu ZM (2012) Response to waste electrical and electronic equipments in China: legislation, recycling system and advanced integrated process. Environ Sci Technol 46:4713–4724

    Article  CAS  Google Scholar 

  • Zhu P, Chen Y, Wang LY, Zhou M (2012) Treatment of waste printed circuit board by green solvent using ionic liquid. Waste Manag 32:1914–1918

    Article  CAS  Google Scholar 

  • Zhu N, Xiang Y, Zhang T, Wu P, Dang Z, Li P, Wu J (2011) Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria. J Hazard Mater 192(2):614–619

    Article  CAS  Google Scholar 

  • Zwicker N, Theobald U, Zahner H, Fiedler HP (1997) Optimization of fermentation condition for the production of ethylene-diamine-disuccinic acid by Amycolatopsis orientalis. J Ind Microbial Biotechnol 19(4):280–285

Download references

Acknowledgments

This work was financially supported by the National Key Technologies R&D Program (2014BAC03B04) and the National Natural Science Foundation of China (21177069, 71373141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhui Li.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awasthi, A.K., Zeng, X. & Li, J. Integrated bioleaching of copper metal from waste printed circuit board—a comprehensive review of approaches and challenges. Environ Sci Pollut Res 23, 21141–21156 (2016). https://doi.org/10.1007/s11356-016-7529-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7529-9

Keywords

Navigation