Skip to main content
Log in

Alginate Lyase Produced by Filamentous Fungus Through Solid State Fermentation Using Sargassum from the Brazilian Coast

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This article aimed at studying semi-solid-state fermentation using filamentous fungus for alginate lyase production using residual macroalgae as a substrate. Sargassum was the macroalgae chosen, given its wide abundance in the Brazilian coast. Among the fungal strains tested, Cunninghamella echinulata proved to be the most promising species. This work initially studied the optimisation of a nutrient solution (NS) in terms of nitrogen content, having verified that an increasing in peptone concentration (5 g/L) and the addition of yeast extract (2 g/L) (denominated NS2) led to a satisfactory fungal development, doubling alginate lyase production. Regarding moisture content, an increasing of enzyme production was verified when 65–75% of moisture content was used, with production peak reaching between 175 and 200 U/mL. The use of inoculum concentration between 2.106 and 1.107 spores/gbiomass did not have a significant influence on alginate lyase production. Moreover, the addition of an inducer (sodium alginate) increased enzyme production by 43%, shifting enzyme activity peak from 175 to 250 U/ml, with mass biomass substitution between 16.66 and 33.33% (walginate/wtotal). The results showed that higher NS2 pH (7–8.5) accelerated the production peak, which was higher than in the assays carried out with lower pH. Finally, stability of the enzyme extract to freezing was verified.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request through a material transfer agreement.

Code Availability

Not applicable.

References

  1. Preiss, J., Ashwell, G.: Alginic acid metabolism in bacteria: I. enzymatic formation of unsaturated oligosac-charides and 4-deoxy-l-erythro-5-hexoseulose uronic acid. J. Biol. Chem 237, 309–316 (1962). https://doi.org/10.1016/S0021-9258(18)93920-7

    Article  Google Scholar 

  2. Wong, T.Y., Preston, L.A., Schiller, N.L.: Alginate lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu. Rev. Microbiol. 54, 289–340 (2000). https://doi.org/10.1146/annurev.micro.54.1.289

    Article  Google Scholar 

  3. Zhu, B., Yin, H.: Alginate lyase: review of major sources and classification, properties, structure-function analysis and applications. Bioengineered 6(3), 125–131 (2015). https://doi.org/10.1080/21655979.2015.1030543

    Article  MathSciNet  Google Scholar 

  4. Mohapatra, B.R.: Biocatalytic characteristics of chitosan nanoparticle-immobilized alginate lyase extracted from a novel Arthrobacter species AD-10. Biocatal. Agric. Biotechnol. 23(101458), 1–8 (2020). https://doi.org/10.1016/j.bcab.2019.101458

    Article  Google Scholar 

  5. SCIENCE DIRECT [Database – Internet], Elsevier. Available in: http://www.sciencedirect.com. Accessed April 2020

  6. SCIELO [Database – Internet], SciELO Citation Index, Available in: http://www.scielo.org/php/index.php. Accessed April 2020

  7. SCOPUS [Database – Internet]. Elsevier, Available in: https://www-scopus-com.ez9.periodicos.capes.gov.br. Accessed April 2020

  8. INPI [Database – Internet], Instituto Nacional da Propriedade Industrial, Available in: http://www.inpi.gov.br. Accessed April 2020

  9. WIPO [Database – Internet], PATENTSCOPE World Intellectual Property Organization, Available in: https://patentscope.wipo.int. Accessed April 2020

  10. PI [Database – Internet], Patent Inspiration, Available in: https://app.patentinspiration.com. Accessed April 2020

  11. ESPECENET [Database – Internet], Patent Search, Available in: https://worldwide.espacenet.com/. Accessed April 2020

  12. DERWENT [Database – Internet]. Derwent Innovations Index. Disponível em: http://appswebofknowledge.ez9.periodicos.capes.gov.br/DIIDW_GeneralSearch_input.do?product=DIIDW&search_mode=GeneralSearch&SID=7AcaQ53pO99a4LY3mmz&preferencesSaved. Accessed April 2020

  13. Hansen, J.B., Doubet, R.S., Ram, J.: Alginase enzyme production by Bacillus circulans. Appl. Environ. Microbiol. 47(4), 704–709 (1984)

    Article  Google Scholar 

  14. Schaumann, K., Weide, G.: Enzymatic degradation of alginate by marine fungi. Hydrobiologia 2041205, 589–596 (1990)

    Article  Google Scholar 

  15. Sawabe, T., Ezura, Y., Kimura, T.: Purification and characterization of an alginate lyase from marine Alteromonas sp. Bull. Jpn. Soc. Sci. Fish. 58(3), 521–527 (1992). https://doi.org/10.2331/suisan.58.521

    Article  Google Scholar 

  16. Boyd, A., Chakrabarty, A.M.: Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 60(7), 2355–2359 (1994)

    Article  Google Scholar 

  17. Eftekhar, F., Schiller, N.L.: Partial purification and characterization of a mannuronan-specific alginate lyase from Pseudomonas aeruginosa. Curr. Microbiol. 29, 37–42 (1994)

    Article  Google Scholar 

  18. Malissard, M., Chavagnat, F., Duez, C., Vacheron, M., Guinand, M., Michel, G., Ghuysen, J.: Overproduction of the mannuronate alginate lyase AlxMB. FEMS Microbiol. Lett. 126, 105–112 (1995). https://doi.org/10.1111/j.1574-6968.1995.tb07402.x

    Article  Google Scholar 

  19. Nagakawa, A., Ozaki, T., Chubachi, K., Hosoyama, T., Okubo, T., Tyobe, S., Suzuki, T.: An effective method for isolating alginate lyase—producing Bacillus sp. ATB-1015 strain and purification and characterization of the lyase. J. Appl. Microbiol. 84, 328–335 (1998). https://doi.org/10.1046/j.1365-2672.1998.00319.x

    Article  Google Scholar 

  20. An, Q., Zhang, G., Wu, H., Zhang, Z., Gong, W., Liu, Y., Li, X., Murata, Y.: Production and partial properties of alginase from newly isolated Flavobacterium sp. LXA. Process Biochem. 43, 842–847 (2008). https://doi.org/10.1016/j.procbio.2008.04.001

    Article  Google Scholar 

  21. An, Q., Zhang, G., Wu, H.T., Zhang, Z., Zheng, G., Lian, L., Murata, Y., Li, X.: Alginate-deriving oligosaccharide production by alginase from newly isolated Flavobacterium sp. LXA and its potential application in protection against pathogens. J. Appl. Microbiol. 106, 161–170 (2009). https://doi.org/10.1111/j.1365-2672.2008.03988.x

    Article  Google Scholar 

  22. Kobayashi, T., Uchimura, K., Miyazaki, M., Nagi, Y., Morikoshi, K.: A new higher-alkaline alginate lyase from a deep-sea bacterium Agarivorans sp. Extremophiles 13(1), 121–129 (2009). https://doi.org/10.1007/s00792-008-0201-7

    Article  Google Scholar 

  23. Konno, N., Ishida, T., Igarashi, K., Fushinobu, S., Habu, N., Samejima, M., Isogai, A.: Crystal structure of polysaccharide lyase family 20 endo-β-1,4-glucuronan lyase from the filamentous fungus Trhichoderma reesei. FEBS Lett. 583, 1323–1326 (2009). https://doi.org/10.1016/j.febslet.2009.03.034

    Article  Google Scholar 

  24. Li, J., Dong, S., Song, J., Li, C., Cheng, X., Xie, B., Zhang, Y.: Purification and characterization of a bifunctional alginate lyase from Pseudomonas sp. SM0524. Mar. Drugs 9, 109–123 (2011)

    Article  Google Scholar 

  25. Li, L., Jiang, X., Guan, H., Wang, P.: Preparation, purification and characterization of alginate oligosaccharides degraded by alginate lyase from Pseudomonas sp, HZJ216. Carbohyd. Res. 346, 794–800 (2011)

    Article  Google Scholar 

  26. Elahwany, A.M.D., Elborai, A.M.: Optimization of médium composition for extracelular algiante lyases of a marine bacterium. Afr. J. Microbiol. Res. 6(10), 2403–2409 (2012)

    Google Scholar 

  27. Huang, L., Zhou, J., Li, X., Peng, Q., Lu, H., Du, Y.: Characterization of a new alginate lyase from newly isolated Flavobacterium sp. S20. J. Ind. Microbiol. Biotechnol. 40, 113–122 (2013). https://doi.org/10.1007/s10295-012-1210-1

    Article  Google Scholar 

  28. Lavin, P., Gallardo-Cerda, J., Torres-Dias, C., Asencio, G., Gonzalez, M.: Cepa antártica de Bacillus sp., com actividad extracelular de tipo agarolítica y alginatoliasa. Gayana 777(2), 1–9 (2013). https://doi.org/10.4067/S0717-65382013000200001

    Article  Google Scholar 

  29. Koti, B.A., Manohar, S., Lolitha, J.: Media optimization for depolymerization of alginate by Pseudomonas aeruginosa AG LSL-11. Int. Lett. Nat. Sci. 19, 30–39 (2014). https://doi.org/10.18052/www.scipress.com/ILNS.19.30

    Article  Google Scholar 

  30. Sivakumar, T., Sathya, C., Shankar, T., Ponmanickam, P.: Screening and optimization of alginase producing Bacillus sp. from seaweed. J. Res. Art. 14(2), 421–429 (2015)

    Google Scholar 

  31. Beltagy, E.A., El-Borai, A., Lewiz, M., Elassar, S.A.: Purification and characterization of alginate lyase from locally isolated marine Pseudomonas stutzeri MSEA04. Acta Biol. Hung. 67, 305–317 (2016)

    Article  Google Scholar 

  32. Li, S., Wang, L., Hao, J., Xing, M., Sun, J., Sun, M.: Purification and characterization of a new alginate lyase from marine bacterium Vibrio sp. SY08. Mar. Drugs 15(1), 1–11 (2017)

    Article  Google Scholar 

  33. Shankar, T., Sivakumar, T., Satya, C., Ponmanickam, P.: Purification, characterization and immobilization of alginase produced by Bacillus sp. associated with Sargassum wightii. Univers. J. Microbiol. Res. 4(1), 11–22 (2016)

    Article  Google Scholar 

  34. Zhu, Y., Wu, L., Chen, Y., Ni, H., Xiao, A., Cai, H.: Characterization of na extracelular biofunctional alginate lyase from marine Microbulbifer sp. ALW1 and antioxidante activity of enzymatic hydrolysates. Microbiol. Res. 182, 49–58 (2016)

    Article  Google Scholar 

  35. Tavafi, H., Abdi-Ali, A., Ghadam, P., Gharavi, S.: Screening and optimization of media compositions for extracelular alginate lyase production. Iran. Biomed. J. 21(1), 48–56 (2017)

    Article  Google Scholar 

  36. Wang, M., Chen, L., Zhang, Z., Wang, X., Qin, S., Yan, P.: Screening of alginate lyase—excreting microorganisms from the surface of brown algae. AMB Express 7(74), 1–9 (2017)

    Google Scholar 

  37. Chen, P., Zhu, Y., Hen, Y., Zeng, Y., Sun, Y.: Purification and characterization of a novel alginate lyase from the marine bacterium Bacillus sp. Alg07. Mar. Drugs 16(86), 2–13 (2018)

    Google Scholar 

  38. Hifney, A.F., Fawzy, M.A., Abdel-gawed, K.M., Gomaa, M.: Upgrading the antioxidante properties of fucoidan and alginate from Cystoseira trinodis by funfgal fermentation or enzymatic pretreatment of the seaweed biomass. Food Chem. 269, 387–395 (2018)

    Article  Google Scholar 

  39. Li, S., Wang, Z., Wang, L., Peng, J., Wang, Y., Han, Y., Zhao, S.: Combined enzymatic hydrolysis and selective fermentation for green production of alginate oligosaccharides from Laminaria japonica. Biores. Technol. 281, 84–89 (2019)

    Article  Google Scholar 

  40. Sun, X., Shen, W., Gao, Y., Cai, M., Zhou, M., Zhang, Y.: Heterologous expression and purification of a marine alginate lyase in Escherichia coli. Protein Expr. Purif. 153, 97–104 (2019)

    Article  Google Scholar 

  41. Qiao, L., Yang, X., Xie, R., Du, C., Chi, Y., Zhang, J., Wang, P.: Efficient production of ulvan lyase from Ulva prolifera by Catenovulum sp. LP based on stage-controlled fermentation strategy. Algal Res. 46, 101–112 (2020)

    Article  Google Scholar 

  42. Singh, R.P., Gupta, V., Kumari, P., Kumar, M., Reddy, C.R.K., Prassad, K., Jha, B.: Purification and partial characterization of na extracelular alginate lyase from Aspergillus oryzae isolated from brown seaweed. J. Appl. Phycol. 23, 755–776 (2011)

    Article  Google Scholar 

  43. Papi, M., Maiorana, A., Bugli, F., Torelli, R., Posterano, B., Maulucci, G., Spirito, M., Sanguinetti, M.: Detection of biofilm-grown Aspergillus fumigatus by means of atomic force spectroscopy: ultrastructural effects of alginate lyase. Microsc. Microanal. 18(5), 1088–1094 (2012). https://doi.org/10.1017/S1431927612001067

    Article  Google Scholar 

  44. Takaaki, I., Yoshihisa, T., Toshiaki, K.: Method for improving infection ratio of mycorrhizal fungi. Depositante: Meiji Seika Kaisha, JP H09241112A. Depósito: 16/08/1997 (1997)

  45. Avak, K., Jordi, M.F., Robert, D.J., Tiffany, F.C., John, R.: Methods related to engineered erythoid cells comprising 4-1BBL. Depositante: Rubius Therapeutics Inc (US), US 10517897B1. Depósito: 31/12/2019 (2019)

  46. López-Cervantes, J., Sánchez-Machado, D.I., Rochin, K.R.F.: Proceso de Biodegradación y composición. Depositante: Juan Pedro Vallerejo Lopez, EP 2515674. Depósito: 02/06/2016 (2016)

  47. Murata, K., Kyoto, U., Hashimoto, W., Maruha, N.H., Kawai, S., Oda, H., Iohana, K., Mikami, B., Takeda, H., Yoneyama, F., Ochiai, A.: Ethanol production from ocean biomass. Depósitante: Oldon, Spivak, McClelland, Maiar & Neutedt, L. L. P. , US 20120220004. Depósito: 30/08/2012 (2012)

  48. Zhang, X., Bai, C., Chi, F., Zheng, G., Wu, M., Min, W.: Bacterial strain capable of generating alginate lyase and fermentation method thereof. Depósitante: Oceon res CT of Zhousshan, CN102586150A. Depósito: 18/07/2012. (2012)

  49. Li, A., Wang, L.: Method for utilizing high-density culture gene engineering bacteria to prepare alginate lyase. Depósitante: Univ. Shanghai Ocean, CN102864136A. Depósito: 09/01/2013 (2013)

  50. Xiao, A., Cai, H., Ni, H., Yang, F., Ping, L., Zhu, Y., Huang, G., Li, L., Yang, Y., Wu, L.: Culture medium and fermentation method for producing alginate lyase by fermentation of microvesicle bacterial genus. Depósitante: CN 104651339°. Depósito: 27/06/2015 (2015)

  51. Li, L., Quin, S., Nwu, M., Liu, Z., Jiao, X., Cui, Y.: Alginate- lyase-generating bacilli and preparation method and application thereof. Depósitante: Yantai Inst Coastal Zone Res Cas. Depósito: 31/07/2018 (2018)

  52. Chen, P., Men, Y., Sun, Y., Yan, J.J., Zeng, Y., Zhu, Y.: Novel alginate lyase, preparation mothod abd application thereof. Depósitante: Tianjin inst of industrial Biotechnology chinese academy of sciences, CN109295043A. Depósito: 01/02/2019 (2019)

  53. Zhang, X. (2019) A method for producing alginate lyase through fermentatiton by using marine bacteria. Depósitante: Zhang Xuehua, CN 110195051°. Depósito: 03/09/2019.

  54. Pandey, A., Soccol, C.R., Rodriguez-Leon, J.A., Nigam, P.: Solid state fermentation in biotechnology. Asiatech 3, 221–230 (2011)

    Google Scholar 

  55. Gervais, P., Molin, P.: The role of water in solid state fermentation. Biochem. Eng. J. 13(2/3), 85–101 (2003). https://doi.org/10.1016/S1369-703X(02)00122-5

    Article  Google Scholar 

  56. Sandhya, C., Sumantha, A., Szakacs, G., Pandey, A.: Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem. 40, 2689–2694 (2005). https://doi.org/10.1016/j.procbio.2004.12.001

    Article  Google Scholar 

  57. Ganzon-Fortes, E.T., Campos, R.R., Udarbe, J.: The use of Philippine seaweeds in agriculture. Appl. Phycol. Forum 10, 6–7 (1993)

    Google Scholar 

  58. Moreira, L., Cabrera, R., Suárez, A.M.: Evaluación de la biomasa de macroalgas marinas del género Sargassum C. Agardh (Phaeophyta, Fucales). Revista de Invertigaciones Marinas 27(2), 115–120 (2006)

    Google Scholar 

  59. Mafra, L.L., Jr., Cunha, S.R.: Bancos de sargassum cymosum (phaeophyceae) na enseada de armação do itapocoroy, penha, sc: biomassa e rendimento em alginato. Facimar 6, 111–119 (2002)

    Google Scholar 

  60. Torres, E.M., Sokolsky, T., Tucker, C.M., Chan, L.Y., Boselli, M., Dunham, M.J., Amon, A.: Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317(5840), 916–924 (2007)

    Article  Google Scholar 

  61. Andriamanantoanina, H., Rinaudo, M.: Characterization of the alginates from five madagascan brown algae. Carbohyd. Polym. 82, 555–560 (2010). https://doi.org/10.1016/j.carbpol.2010.05.002

    Article  Google Scholar 

  62. Cong, Q., Xiao, F., Liao, W., Dong, Q., Ding, K.: Structure and biological activities of na alginate from Sargassum fusiforme, and its sulfated derivative. Int. J. Biol. Macromol. 5, 56–65 (2014). https://doi.org/10.1016/j.ijbiomac.2014.05.056

    Article  Google Scholar 

  63. Bertagnolli, C., Espíndola, A.P.D.M., Kleinubing, S.J., Tasic, L., Silva, M.G.C.: Sargassum filipendula alginate from Brazil: seasonal influence and characteristics. Carbohyd. Polym. 111, 619–623 (2014). https://doi.org/10.1016/j.carbpol.2014.05.024

    Article  Google Scholar 

  64. Barbot, Y.N., Al-Ghaili, H., Benz, R.: A review on the valorization of macroalgal wastes for biomethane production. Mar. Drugs 14(6), 1–27 (2016). https://doi.org/10.3390/md14060120

    Article  Google Scholar 

  65. Xiao, J., Wang, Z., Song, H., Fan, S., Yuan, C., Fu, M., Miao, X., Zhang, X., Su, R., Hu, C.: An anomalous bi-macroalgal bloom caused by Ulva and Sargassum seaweeds during spring to summer of 2017 in the western Yellow sea. Harmful Algae 93, 101760 (2020). https://doi.org/10.1016/j.hal.2020.101760

    Article  Google Scholar 

  66. Andrade, R.F.S., Silva, T.A.L., Ribeaux, D.R., Rodriguez, D.M., Souza, A.F., Lima, M.A.B., Lima, R.A., Silva, C.A.A., Campos-Takaki, G.M.C.: Promising biosurfactant produced by Cunninghamella echinulata UCP 1299 using renewable resources and its application in cotton fabric cleanng process. Adv. Mater. Sci. Eng. 1624573, 1–12 (2018)

    Article  Google Scholar 

  67. Rasbold, L.M., Delai, V.M., Kerber, C.M.C., Simões, M.R., Heinen, P.R., Silva, J.L.C., Sirão, R.C.G., Kadowaki, M.K., Moller, A.: Production, immobilization and application of invertase from new wild strain Cunninghamella echinulata PA 3512 MM. J. Appl. Microbiol. (2021). https://doi.org/10.1111/jam.15394

    Article  Google Scholar 

  68. Khan, M.F., Murphy, C.D.: Cunninghamella spp. produce mammalian-equivalent metabólites from fluorinated pyrethroid pesticides. AMB Express 11, 101 (2021)

    Article  Google Scholar 

  69. Sobon, A., Szewczyk, R., Rozalska, S., Deugonski, J.: Metabolomics of the recovery of the filamentous fungus Cunninghamella echinulata exposed to tributylum. Int. Biodeterior. Biodegrad. 127, 130–138 (2018)

    Article  Google Scholar 

  70. Le Blanc, R.E., Meriden, Z., Sutton, D.A., Thompson, E.H., Neofytos, D., Zhang, S.X.: Cunninghamella echinulata causing fatally invasive fungus sinusites. Diagnostic Microbiol Infect. Dis. 76(4), 506–509 (2013)

    Article  Google Scholar 

  71. Khan, M.F., Saleem, D., Murphy, C.D.: Cunninghamella spp. biofilm growth by tryptophol and tyrosol. Biofilm 3, 100046 (2021)

    Article  Google Scholar 

  72. IAL – Instituto Adolfo Lutz: Métodos físico-químicos para análises de alimentos, 4th edn. Instituto Aldolf Lutz, São Paulo (2005)

    Google Scholar 

  73. Growtthaman, M.K., Krishna, C., Moo-Young, M.: Fungal solid state fermentation—an overview. Agric. Food Prod. 1, 305–353 (2001). https://doi.org/10.1016/S1874-5334(01)80014-9

    Article  Google Scholar 

  74. Silva, F.L., Campos, A.O., Santos, D.A., Oliveira Junior, S.D., Padilha, C.E.A., Sousa Junior, F.C., Macedo, G.R., Santos, E.S.: Pretreatments of Carnauba (Copernicia prunifera) straw residue for production of cellulolytic enzymes by Trichoderma reesei CCT-2768 by solid state fermentation. Renew. Energy 116, 299–308 (2018). https://doi.org/10.1016/j.renene.2017.09.064

    Article  Google Scholar 

  75. Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F., Xi, Y.: Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Biores. Technol. 99(16), 7623–7629 (2008). https://doi.org/10.1016/j.biortech.2008.02.005

    Article  Google Scholar 

  76. Jecu, L.: Solid-state fermentation of agricultural wastes for endoglucanase production. Ind. Crops Prod. 11(1), 1–5 (2000). https://doi.org/10.1016/S0926-6690(99)00022-9

    Article  Google Scholar 

  77. Hu, T., Zhiu, Y., Dai, L., Wang, Y., Liu, D., Zhang, J., Liu, H.: Enhanced cellulose production by solid state fermentation with polyurethane foam as inert supports. Procedia Eng. 18, 335–340 (2011). https://doi.org/10.1016/j.proeng.2011.11.053

    Article  Google Scholar 

  78. Narrar, M., Dixit, G., Divecha, J., Madamwar, D., Shah, A.R.: Production of cellulases by solid state fermentation wuith Aspergillus terreus and enzymatic hydrolysis of mild alkali-treated rice straw. Biores. Technol. 121, 355–361 (2012). https://doi.org/10.1016/j.biortech.2012.05.140

    Article  Google Scholar 

  79. Cunha, F.M., Bacchin, A.L.G., Horta, A.C.L., Zangirolami, T.C., Badino, A.C., Farinas, C.S.: Indirect method for quantification of cellular biomass in a solidscontaining médium used as pre-culture for celulase production. Biotechnol. Bioprocess Eng. 17(1), 100–108 (2012). https://doi.org/10.1007/s12257-011-0405-z

    Article  Google Scholar 

  80. Lever, M., Ho, G., Cord-Ruwisch, R.: Simplifying cellulase production by using environmental selection pressures and recycling substrate. Environ. Techonol. 334(4), 471–475 (2013). https://doi.org/10.1080/09593330.2012.701236

    Article  Google Scholar 

  81. Abud, A.K.S., Araújo, M.L., Almeida, R.M.R.G.: Uso de resíduo de laranja lima e de casca de coco verde na produção de enzimas. Sci. Plena 11(10), 1–8 (2015). https://doi.org/10.14808/sci.plena.2015.104201

    Article  Google Scholar 

  82. Sánchez, S.R., Sánchez, I.G., Arévalo-Villena, M., Pérez, A.B.: Production and immobilization of enzymes by solid-state fermentation of agroindustrial waste. Bioprocess Biosyst. Eng. 38(3), 587–593 (2015). https://doi.org/10.1007/s00449-014-1298-y

    Article  Google Scholar 

  83. Boggione, J.M., Allasia, M.B., Bassani, G., Farruggia, B.: Potential use of soybean hulls and waste paper as supports in SSF for celulase production by Aspergillus niger. Bioprocess Eng. 6, 1–8 (2016). https://doi.org/10.1016/j.bcab.2016.02.003

    Article  Google Scholar 

  84. Liao, H., Fan, X., Mei, X., Wei, Z., Raza, W., Shen, Q., Xu, Y.: Production and characterization of cellulolytic enzyme from Penicillium oxalicum GZ-2 and its application in lignocellulose saccharification. Biomass Bioenerg. 74, 122–134 (2015). https://doi.org/10.1016/j.biombioe.2015.01.016

    Article  Google Scholar 

  85. Raimbault, M.: General and microbiological aspects of solid substrate fermentation. Electron. J. Biotechnol. 3(3), 255–260 (1998)

    Google Scholar 

  86. Oliveira, S.D., Padilha, C.E.A., Asevedo, E.A., Pimentel, V.C., Aráujo, F.R., Macedo, G.R., Santos, E.S.: Utilization of agroindustrial residues for producing cellulases by Aspergillus fumigatus on semi-solid fermentation. J. Environ. Chem. Eng. 6, 937–944 (2018). https://doi.org/10.1016/j.jece.2017.12.038

    Article  Google Scholar 

  87. Miller, J.G.: Use of dinitrosalicyclic acid reagent for determination of reducing sugars. Anal. Chem 31(3), 426–428 (1959). https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  88. Swift, S.M., Hudgens, J.W., Heselpoth, R.D., Bales, P.M., Nelson, D.C.: Characterization of AlgMsp, an alginate lyase from Microbulbifer sp. 6532A. PLoS ONE 9(11), e112939 (2014)

    Article  Google Scholar 

  89. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein- dye binding. Anal. Biochem. 72, 248–254 (1976). https://doi.org/10.1016/0003-2697(76)90527-3

    Article  Google Scholar 

  90. Fenice, M., Di Salbmann, L., Giambattista, R., Federici, F.: Chitinolytic activity at low temperature of na Antarctic strain (A3) of Verticillium lecanii. Res. Microbiol. 149, 289–300 (1998). https://doi.org/10.1016/S0923-2508(98)80304-5

    Article  Google Scholar 

  91. Nampoothiri, K.M., Tomes, G.J., Roopesh, K., Szakacs, G., Nagy, V., Soccol, C.R., Pankey, A.: Thermostable phytase production by Thermoascus aurantiacus in submerged fermentation. Appl. Biochem. Biotechnol. 118, 205–214 (2004). https://doi.org/10.1385/ABAB:118:1-3:205

    Article  Google Scholar 

  92. Merino, A., Eibes, G., Hormaza, A.: Effect of copper and different carbon and nitrogen sources an the decolorization of an industrial dye mixture under solid-state fermentation. J. Clean. Prod. 237, 117–123 (2019). https://doi.org/10.1016/j.jclepro.2019.117713

    Article  Google Scholar 

  93. Aita, B.C., Spannemberg, S.S., Schmaltz, S., Zabot, G.L., Tres, M.V., Kuhn, R.C., Mazutti, M.A.: Production of cell-wall degrading enzymes by solid-state fermentation using agroindustrial residues as substrates. J. Environ. Chem. Eng. 7, 103–193 (2019). https://doi.org/10.1016/j.jece.2019.103193

    Article  Google Scholar 

  94. Saucedo-Castanêda, G., Lonsane, B.K., Navarro, J.M., Roussos, S., Raimbault, M.: Importance of medium pH in solid state fermentation for growth of Schwanniomyces castelli. Lett Appl Microbiol. 15(4), 164–167 (1992). https://doi.org/10.1111/j.1472-765X.1992.tb00753.x

    Article  Google Scholar 

  95. Borzani, W., Schmidell, W., Lima, U.A., Aquarone, E.: Biotecnologia industrial: engenharia bioquímica. Edgard Blucher Ltda, São Paulo (2001)

    Google Scholar 

  96. Wei, N., Quarterman, J., Jin, Y.: Marine macroalgae, an untapped resource for producing fuels and chemicals. Trends Biotechnol. 31(2), 70–77 (2013). https://doi.org/10.1016/j.tibtech.2012.10.009

    Article  Google Scholar 

  97. Hong, I.K., Jeon, H., Lee, S.B.: Comparison of red, brown and green seaweeds on enzymatic saccharification process. J. Ind. Eng. Chem. 20, 2687–2691 (2014). https://doi.org/10.1016/j.jiec.2013.10.056

    Article  Google Scholar 

  98. Zhao, G., Ding, L.L., Pan, Z.H., Kong, D.H., Hadiatullah, H., Fan, Z.C.: Proteinase and glycoside hydrolase production is enhanced insolid-state fermentation by manipulating the carbono and nitrogen fluxes in Aspergillus aryzae. Food Chem. 271, 606–613 (2019). https://doi.org/10.1016/j.foodchem.2018.07.199

    Article  Google Scholar 

  99. Marraiki, N., Vijayaraghavan, P., Elgorban, A.M., Dhas, D.S.D., Al-Rashed, S., Yassin, M.T.: Low cost feedtock for the production of endoglucanase in solid state fermentation by Trichoderma hamatum NGL1 using response surface methodology and saccharification efficacy. J. King Saud Univ. Sci. 12, 1718–1724 (2020). https://doi.org/10.1016/j.jksus.2020.01.008

    Article  Google Scholar 

  100. Zou, H., Ding, S., Zhang, W., Yao, J., Jiang, L., Liang, J.: Study on influence factor in Bacillus thuringiensis production by semi-solid state fermentation using food waste. Procedia Environ. Sci. 31, 127–135 (2016). https://doi.org/10.1016/j.proenv.2016.02.018

    Article  Google Scholar 

  101. Kotwal, S.M., Gote, M.M., Sainkar, S.R., Khan, M.I., Khire, J.M.: Production of α-galactosidase by thermophilic fungus Humicola sp. in solid-state fermentation and its application in soyamilk hydrolysis. Process Biochem. 33(3), 337–343 (1998). https://doi.org/10.1016/S0032-9592(97)00084-8

    Article  Google Scholar 

  102. Saxena, R., Singh, R.: Amylase production by solid-state fermentation of Agro-industrial wastes using Bacillus sp. J. Microbiol. 42, 1334–1342 (2011). https://doi.org/10.1590/S1517-83822011000400014

    Article  Google Scholar 

  103. Moura, G.S., Lanna, E.A.T., Donzele, J.L., Falkoski, D.L., Rezende, S.T.R., Olivieira, M.G.A., Albino, L.F.T.: Stability of enzyme complex solid-state fermentation subjected to the processing of pelleted diet and storage time at diferente temperatures. Revista Brasileira de Zootecnia 45(12), 731–736 (2016). https://doi.org/10.1590/s1806-92902016001200001

    Article  Google Scholar 

  104. Astolfi, V., Astolfi, A.L., Mazutti, M.A., Rigo, E., Luccio, M.D., Camargo, A.F., Dalastra, C., Kubeneck, S., Fongaro, G., Treichel, H.: Cellulolytic enzyme production from agricultural residues for biofuel purpose on circular economy approach. Bioprocess Biosyst. Eng. 42(5), 677–685 (2019). https://doi.org/10.1007/s00449-019-02072-2

    Article  Google Scholar 

Download references

Funding

C.E.F.S would like to thank the National the National Research Council and Technological Development (CNPq), Project Numbers: 167490/2017-6, 407274/2018-9 and 313195/2019-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Eduardo De Farias Silva.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Silva, M.C., De Farias Silva, C.E., dos Santos, L.M. et al. Alginate Lyase Produced by Filamentous Fungus Through Solid State Fermentation Using Sargassum from the Brazilian Coast. Waste Biomass Valor 13, 2947–2962 (2022). https://doi.org/10.1007/s12649-022-01706-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01706-z

Keywords

Navigation