Skip to main content
Log in

Utilization of Alginate from Brown Macroalgae for Ethanol Production by Clostridium phytofermentans

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Brown macroalgae have been characterized as a potential feedstock for bioethanol production. The bioconversion of brown macroalgae requires investigation on microbial strains that can convert alginate into bioethanol. In this study, we have shown the ability of Clostridium phytofermentans to utilize the alginate extracted from brown macroalgae for ethanol production. Fermentation studies were performed with alginate extracts of two brown macroalgae, Padina tetrastromatica and Turbinaria ornata. The ethanol concentration achieved by batch fermentation was 0.952 g/L with synthetic sodium alginate, 0.375 g/L with alginate extract of P. tetrastromatica and 1.0 g/L with alginate extract of T. ornata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. S1.

Similar content being viewed by others

REFERENCES

  1. Fathima, A.A., Sanitha, M., Kumar, T., Iyappan, S., and Ramya, M., Bioresour. Technol., 2016, vol. 202, pp. 253–256.

    Article  CAS  Google Scholar 

  2. Sudhakar, M. P., Jegatheesan, A., Poonam, C., Perumal, K., and Arunkumar, K., Renewable Energy, 2017, vol. 105, pp. 133–139.

    Article  CAS  Google Scholar 

  3. Ardalan, Y., Jazini, M., and Karimi, K., Algal Res., 2018, vol. 36, pp. 29–36.

    Article  Google Scholar 

  4. Ashokkumar, V., Salim, M.R., Salam, Z., Sivakumar, P., Chong, C.T., Elumalai, S., et al., Energ. Convers. Manage., 2017, vol. 135, pp. 351–361.

    Article  CAS  Google Scholar 

  5. Borines, M.G., De Leon, R.L., and Cuello, J.L., Bioresour. Technol., 2013, vol. 138, pp. 22–29.

    Article  CAS  Google Scholar 

  6. Saravanan, K., Duraisamy, S., Ramasamy, G., Kumarasamy, A., and Balakrishnan, S., Biocat. Agric. Biotechnol., 2018, vol.14, pp. 444–449.

    Article  Google Scholar 

  7. Gao, S., Zhang, Z., Li, S., Su, H., Tang, L., Tan, Y., Yu, W., and Han, F., Int. J. Biol. Macromol., 2018, vol. 120, pp. 729–735.

    Article  CAS  Google Scholar 

  8. Zhu, B., Ni, F., Ning, L., Sun, Y., and Yao, Z., Int. J. Biol. Macromol., 2018, vol. 115, pp. 1063–1070.

    Article  CAS  Google Scholar 

  9. Azhar, S.H.M. and Abdulla, R., Biocat. Agric. Biotechnol., 2018, vol. 14, pp. 457–465.

    Article  Google Scholar 

  10. Enquist-Newman, M., Faust, A.M.E., Bravo, D.D., Santos, C.N.S., Raisner, R.M., Hanel, A., et al., Nature, 2014, vol. 505, pp. 239–243.

    Article  CAS  Google Scholar 

  11. Wargacki, A.J., Leonard, E., Win, M.N., Regitsky, M.N., Santos, C.N.S., Kim, P.B., et al., Science, 2012, vol. 335, pp. 308–313.

    Article  CAS  Google Scholar 

  12. Takeda, H., Yoneyama, F., Kawai, S., Hashimoto, W., and Murata, K., Energ. Environ. Sci., 2011, vol. 4, pp. 2575–2581.

    Article  CAS  Google Scholar 

  13. Zhang, W. and Zhang, J., Energy Sources Part A, 2018, pp. 1–6.

  14. Lombard, V., Ramulu, H.G., Drula, E., Coutinho, P.M., and Henrissat, B., Nucleic Acids Res., 2014, vol. 42, pp. D490–D495.

    Article  CAS  Google Scholar 

  15. Tolonen, A.C., Zuroff, T.R., Ramya, M., Boutard, M., Cerisy, T., and Curtis, W.R., Appl. Environ. Microbiol., 2015, vol. l81, pp. 5440–5448.

  16. Boutard, M., Cerisy, T., Nogue, P.Y., Alberti, A., Weissenbach, J., Salanoubat, M., and Tolonen, A.C., PLoS Genet., 2014, vol. 10: e1004773, 2014.

    Article  Google Scholar 

  17. Torres, M.R., Sousa, A.P., Silva Filho, E.A., Melo, D.F., Feitosa, J.P., De Paula, R.C., and Lima, M.G., Carbohydr. Res., 2007, vol. 342, pp. 2067–2074.

    Article  CAS  Google Scholar 

  18. Karmakar, P., Ghosh, T., Sinha, S., Saha, S., Mandal, P., Ghosal, P.K., and Ray, B., Carbohydr. Polym., 2009, vol. 78, pp. 416–421.

    Article  CAS  Google Scholar 

  19. Bradford, M.M., Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  Google Scholar 

  20. BeMiller J. N., AACC Intern.Press, 2019, pp. 293–301.

  21. Schiener, P., Stanley, M.S., Black, K.D., and Green, D.H., J. Appl. Phycol., 2016, vol. 28, pp. 3009–3020.

    Article  CAS  Google Scholar 

  22. Jonsson, L.J., Alriksson, B., and Nilvebrant, N.O., Biotechnol. Biofuels, 2013, vol. 6.1, p. 16.

    Article  Google Scholar 

  23. Sunwoo, I.Y., Hau, N.T., Ra, C.H., Jeong, G.T., and Kim, S.K., Appl. Biochem. Biotechnol., 2018, vol. 185. pp.1075–1087.

    Article  CAS  Google Scholar 

  24. Fujii, M., Yoshida, S., Murata, K., and Kawai. S., Bioengineered, 2014, vol. 5, pp. 38–44.

    Article  Google Scholar 

  25. Tavafi, H., Ali, A.A., Ghadam, P., and Gharavi, S., Microb. Pathog., 2018, vol. 124, pp. 356–364.

    Article  CAS  Google Scholar 

  26. Foran, E., Buravenkov, V., Kopel, M., Mizrahi, N., Shoshani, S., Helbert, W., and Banin, E., Algal Res., 2017, vol. 25, pp. 39–46.

    Article  Google Scholar 

  27. Yu, Z., Zhu, B., Wang, W., Tan, H., and Yin, H., Int. J. Biol. Macromol., 2018, vol. 112, pp. 937–942.

    Article  CAS  Google Scholar 

  28. Inoue, A., Nishiyama, R., and Ojima, T., Algal Res., 2016, vol. 19, pp. 355–362.

    Article  Google Scholar 

  29. Chen, Y., Dou, W., Li, H., Shi, J., and Xu, Z., Carbohydr. Res., 2018, vol. 470, pp. 36–41. https://doi.org/10.1016/j.carres.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  30. Pei, X., Chang, Y., and Shen, J., Protein Expr. Purif., 2018, vol. 154, pp. 44–51.

    Article  Google Scholar 

  31. Petit, E., Coppi, M.V., Hayes, J.C., Tolonen, A.C., Warnick, T., Latouf, W.G., et al., PLoS One, 2015, vol. 10, no. 6. e0118285.

    Article  Google Scholar 

  32. Biegel, E. and Müller, V., Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 18138–18142.

    Article  CAS  Google Scholar 

  33. Greetham, D., Zaky, A., Makanjuola, O., and Du, C., Curr. Opin. Green Sustain. Chem., 2018, vol. 14, pp. 53–59.

    Article  Google Scholar 

  34. Ji, S.Q., Wang, B., Lu, M., and Li, F.L., Biotechnol. Biofuels, 2016, vol. 9, no. 81.

  35. Manns, D., Nyffenegger, C., Saakeb, B., and Meyer, A.S., RSC Adv., 2016, vol. 6, pp. 45392–45401.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the SRM Institute of Science and Technology, India for providing infrastructure facilities.

Funding

The author A.A. Fathima acknowledges DST INSPIRE Fellowship (Innovation in Science Pursuit for Inspired Research-No. DST/INSPIRE Fellowship/2012/314) funded by Department of Science and Technology, Govt. of India for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ramya.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharshini, R.S., Fathima, A.A., Dharani, S.R. et al. Utilization of Alginate from Brown Macroalgae for Ethanol Production by Clostridium phytofermentans. Appl Biochem Microbiol 56, 173–178 (2020). https://doi.org/10.1134/S0003683820020040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820020040

Keywords:

Navigation