Skip to main content

Advertisement

Log in

A Critical Review of Challenges Faced by Converting Food Waste to Bioenergy Through Anaerobic Digestion and Hydrothermal Liquefaction

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The conventional approaches for handling food waste has been incineration, composting, landfilling, and anaerobic digestion for producing biogas. In light of organic waste bans and newly discovered presence of per- and polyfluorinated substances (PFAS) in food, food packaging materials, and compost, this review provides a critical summary of what has been investigated and reported and what needs to be considered when choosing suitable pathways for food waste. In addition to the fundamental principles inherent to anaerobic digestion and hydrothermal liquefaction, challenges for each process are identified followed by discussion of potential solutions to resolve the bottlenecks.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kibler, K.M., Reinhart, D., Hawkins, C., Motlagh, A.M., Wright, J.: Food waste and the food-energy-water nexus: a review of food waste management alternatives. Waste Manage. 74, 52–62 (2018). https://doi.org/10.1016/j.wasman.2018.01.014

    Article  Google Scholar 

  2. Karthikeyan, O.P., Trably, E., Mehariya, S., Bernet, N., Wong, J.W., Carrere, H.: Pretreatment of food waste for methane and hydrogen recovery: a review. Biores. Technol. 249, 1025–1039 (2018)

    Article  Google Scholar 

  3. Ren, Y., Yu, M., Wu, C., Wang, Q., Gao, M., Huang, Q., et al.: A comprehensive review on food waste anaerobic digestion: research updates and tendencies. Biores. Technol. 247, 1069–1076 (2018). https://doi.org/10.1016/j.biortech.2017.09.109

    Article  Google Scholar 

  4. Uçkun Kiran, E., Trzcinski, A.P., Ng, W.J., Liu, Y.: Bioconversion of food waste to energy: a review. Fuel 134, 389–399 (2014). https://doi.org/10.1016/j.fuel.2014.05.074

    Article  Google Scholar 

  5. Xiong, X., Yu, I.K.M., Tsang, D.C.W., Bolan, N.S., Sik Ok, Y., Igalavithana, A.D., et al.: Value-added chemicals from food supply chain wastes: state-of-the-art review and future prospects. Chem. Eng. J. 375, 121983 (2019). https://doi.org/10.1016/j.cej.2019.121983

    Article  Google Scholar 

  6. Strazzera, G., Battista, F., Garcia, N.H., Frison, N., Bolzonella, D.: Volatile fatty acids production from food wastes for biorefinery platforms: a review. J. Environ. Manage. 226, 278–288 (2018). https://doi.org/10.1016/j.jenvman.2018.08.039

    Article  Google Scholar 

  7. Zhou, M., Yan, B., Wong, J.W., Zhang, Y.: Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Biores. Technol. 248, 68–78 (2018)

    Article  Google Scholar 

  8. Dahiya, S., Kumar, A.N., Shanthi Sravan, J., Chatterjee, S., Sarkar, O., Mohan, S.V.: Food waste biorefinery: sustainable strategy for circular bioeconomy. Biores. Technol. 248, 2–12 (2018). https://doi.org/10.1016/j.biortech.2017.07.176

    Article  Google Scholar 

  9. Ma, Y., Liu, Y.: Turning food waste to energy and resources towards a great environmental and economic sustainability: an innovative integrated biological approach. Biotechnol. Adv. 37(7), 107414 (2019). https://doi.org/10.1016/j.biotechadv.2019.06.013

    Article  Google Scholar 

  10. Nielsen, C., Rahman, A., Rehman, A.U., Walsh, M.K., Miller, C.D.: Food waste conversion to microbial polyhydroxyalkanoates. Microb. Biotechnol. 10(6), 1338–1352 (2017)

    Article  Google Scholar 

  11. Ong, K.L., Kaur, G., Pensupa, N., Uisan, K., Lin, C.S.K.: Trends in food waste valorization for the production of chemicals, materials and fuels: case study South and Southeast Asia. Biores. Technol. 248, 100–112 (2018). https://doi.org/10.1016/j.biortech.2017.06.076

    Article  Google Scholar 

  12. Jayathilakan, K., Sultana, K., Radhakrishna, K., Bawa, A.: Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. J. Food Sci. Technol. 49(3), 278–293 (2012)

    Article  Google Scholar 

  13. Wang, W., Xu, Y., Wang, X., Zhang, B., Tian, W., Zhang, J.: Hydrothermal liquefaction of microalgae over transition metal supported TiO2 catalyst. Biores. Technol. 250, 474–480 (2018). https://doi.org/10.1016/j.biortech.2017.11.051

    Article  Google Scholar 

  14. Upadhyay, A., Lama, J.P., Tawata, S.: Utilization of pineapple waste: a review. J. Food Sci. Technol. Nepal 6, 10–18 (2010)

    Article  Google Scholar 

  15. Du, C., Abdullah, J.J., Greetham, D., Fu, D., Yu, M., Ren, L., et al.: Valorization of food waste into biofertiliser and its field application. J. Clean. Prod. 187, 273–284 (2018). https://doi.org/10.1016/j.jclepro.2018.03.211

    Article  Google Scholar 

  16. Wainaina, S., Horváth, I.S., Taherzadeh, M.J.: Biochemicals from food waste and recalcitrant biomass via syngas fermentation: a review. Biores. Technol. 248, 113–121 (2018). https://doi.org/10.1016/j.biortech.2017.06.075

    Article  Google Scholar 

  17. Office BT. Biofuels and bioproducts from wet and gaseous waste streams: challenges and opportunities. DOE, EERE. Jan 2017

  18. Thyberg, K.L., Tonjes, D.J., Gurevitch, J.: Quantification of food waste disposal in the United States: a meta-analysis. Environ. Sci. Technol. 49(24), 13946–13953 (2015). https://doi.org/10.1021/acs.est.5b03880

    Article  Google Scholar 

  19. EPA. Advancing sustainable materials management: 2017 fact sheet. Nov 2019

  20. EPA. United States 2030 food loss and waste reduction goal. US Environ Prot Agency (2017) www.epa.gov/sustainable-management-food/united-states-2030-food-loss-and-waste-reduction-goal#goal

  21. EPA. Food recovery hierarchy. US Environ Prot Agency (2017) www.epa.gov/sustainable-management-food/food-recovery-hierarchy

  22. EPA. Wasted food programs and resources across the United States. US Environ Prot Agency (2017) www.epa.gov/sustainable-management-food/wasted-food-programs-and-resources-across-united-states#1

  23. Badgett, A., Milbrandt, A.: A summary of standards and practices for wet waste streams used in waste-to-energy technologies in the United States. Renew. Sustain. Energy Rev. 117, 109425 (2020)

    Article  Google Scholar 

  24. NYC. Waste characterization https://dsny.cityofnewyork.us/wp-content/uploads/2018/04/2017-Waste-Characterization-Study.pdf (2017)

  25. Lee, J.P., Lee, J.S., Park, S.C.: Two-phase methanization of food wastes in pilot scale. In: Davison, B.H., Finkelstein, M. (eds.) Twentieth symposium on biotechnology for fuels and chemicals, pp. 585–93. Humana Press, Totowa (1999)

    Chapter  Google Scholar 

  26. Thyberg, K.L., Tonjes, D.J.: The environmental impacts of alternative food waste treatment technologies in the US. J. Clean. Prod. 158, 101–8 (2017). https://doi.org/10.1016/j.jclepro.2017.04.169

    Article  Google Scholar 

  27. USDA. Biogas opportunities roadmap: voluntary actions to reduce methane emissions and increase energy independent (2014)

  28. Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Biores. Technol. 99(10), 4044–4064 (2008). https://doi.org/10.1016/j.biortech.2007.01.057

    Article  Google Scholar 

  29. Council, Ab.: Current and potential biogas production.https://www.americanbiogascouncilorg/pdf/biogas101pdf (2015)

  30. Pilli, S., Bhunia, P., Yan, S., LeBlanc, R., Tyagi, R., Surampalli, R.: Ultrasonic pretreatment of sludge: a review. Ultrason. Sonochem. 18(1), 1–18 (2011)

    Article  Google Scholar 

  31. Yoshida, H., Mønster, J., Scheutz, C.: Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant. Water Res. 61, 108–118 (2014). https://doi.org/10.1016/j.watres.2014.05.014

    Article  Google Scholar 

  32. Smith, A.L., Stadler, L.B., Cao, L., Love, N.G., Raskin, L., Skerlos, S.J.: Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environ. Sci. Technol. 48(10), 5972–5981 (2014)

    Article  Google Scholar 

  33. Smith, A.L., Skerlos, S.J., Raskin, L.: Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater. Water Res. 47(4), 1655–1665 (2013). https://doi.org/10.1016/j.watres.2012.12.028

    Article  Google Scholar 

  34. Hartley, K., Lant, P.: Eliminating non-renewable CO2 emissions from sewage treatment: an anaerobic migrating bed reactor pilot plant study. Biotechnol. Bioeng. 95(3), 384–398 (2006)

    Article  Google Scholar 

  35. Singh, K.S., Harada, H., Viraraghavan, T.: Low-strength wastewater treatment by a UASB reactor. Biores. Technol. 55(3), 187–194 (1996)

    Article  Google Scholar 

  36. Pauss, A., Andre, G., Perrier, M., Guiot, S.R.: Liquid-to-gas mass transfer in anaerobic processes: inevitable transfer limitations of methane and hydrogen in the biomethanation process. Appl. Environ. Microbiol. 56(6), 1636–1644 (1990)

    Article  Google Scholar 

  37. Bandara, W.M., Satoh, H., Sasakawa, M., Nakahara, Y., Takahashi, M., Okabe, S.: Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane. Water Res. 45(11), 3533–3540 (2011)

    Article  Google Scholar 

  38. Bandara, W.M., Kindaichi, T., Satoh, H., Sasakawa, M., Nakahara, Y., Takahashi, M., et al.: Anaerobic treatment of municipal wastewater at ambient temperature: analysis of archaeal community structure and recovery of dissolved methane. Water Res. 46(17), 5756–5764 (2012)

    Article  Google Scholar 

  39. Giménez, J., Martí, N., Ferrer, J., Seco, A.: Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: evaluation of methane losses with the effluent. Biores. Technol. 118, 67–72 (2012)

    Article  Google Scholar 

  40. McCarty, P.L., Bae, J., Kim, J.: Domestic wastewater treatment as a net energy producer–can this be achieved? ACS Publications, Washington (2011)

    Book  Google Scholar 

  41. Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., et al.: Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500(7464), 567 (2013)

    Article  Google Scholar 

  42. Stein, L.Y., Roy, R., Dunfield, P.F.: Aerobic methanotrophy and nitrification processes and connections. eLS. Wiley, Chichester (2012)

    Google Scholar 

  43. Zhu, J., Wang, Q., Yuan, M., Tan, G.-Y.A., Sun, F., Wang, C., et al.: Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: a review. Water Res. 90, 203–15 (2016). https://doi.org/10.1016/j.watres.2015.12.020

    Article  Google Scholar 

  44. Caldwell, S.L., Laidler, J.R., Brewer, E.A., Eberly, J.O., Sandborgh, S.C., Colwell, F.S.: Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ. Sci. Technol. 42(18), 6791–6799 (2008). https://doi.org/10.1021/es800120b

    Article  Google Scholar 

  45. Knittel, K., Boetius, A.: Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63(1), 311–334 (2009). https://doi.org/10.1146/annurev.micro.61.080706.093130

    Article  Google Scholar 

  46. Borrel, G., Jézéquel, D., Biderre-Petit, C., Morel-Desrosiers, N., Morel, J.-P., Peyret, P., et al.: Production and consumption of methane in freshwater lake ecosystems. Res. Microbiol. 162(9), 832–847 (2011)

    Article  Google Scholar 

  47. Raghoebarsing, A.A., Pol, A., Van de Pas-Schoonen, K.T., Smolders, A.J., Ettwig, K.F., Rijpstra, W.I.C., et al.: A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440(7086), 918 (2006)

    Article  Google Scholar 

  48. Deutzmann, J.S., Schink, B.: Anaerobic oxidation of methane in sediments of lake constance, an oligotrophic freshwater lake. Appl. Environ. Microbiol. 77(13), 4429–4436 (2011)

    Article  Google Scholar 

  49. Kojima, H., Tsutsumi, M., Ishikawa, K., Iwata, T., Mußmann, M., Fukui, M.: Distribution of putative denitrifying methane oxidizing bacteria in sediment of a freshwater lake Lake Biwa. Syst. Appl. Microbiol. 35(4), 233–238 (2012)

    Article  Google Scholar 

  50. Shen, L.-d, Liu, S., Zhu, Q., Li, X.-y, Cai, C., Cheng, D.-q, et al.: Distribution and diversity of nitrite-dependent anaerobic methane-oxidising bacteria in the sediments of the Qiantang River. Microbial Ecology. 67(2), 341–9 (2014)

    Article  Google Scholar 

  51. Hu, B.-l, Shen, L.-d, Lian, X., Zhu, Q., Liu, S., Huang, Q., et al.: Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. Proc. Nat. Acad. Sci. USA 111(12), 4495–500 (2014)

    Article  Google Scholar 

  52. Shen, L.-d, Huang, Q., He, Z.-f, Lian, X., Liu, S., He, Y.-f, et al.: Vertical distribution of nitrite-dependent anaerobic methane-oxidising bacteria in natural freshwater wetland soils. Appl. Microbiol. Biotechnol. 99(1), 349–57 (2015)

    Article  Google Scholar 

  53. Shen, L.-d, Liu, S., He, Z.-f, Lian, X., Huang, Q., He, Y.-f, et al.: Depth-specific distribution and importance of nitrite-dependent anaerobic ammonium and methane-oxidising bacteria in an urban wetland. Soil Biol. Biochem. 83, 43–51 (2015). https://doi.org/10.1016/j.soilbio.2015.01.010

    Article  Google Scholar 

  54. Shen, L.-d, Liu, S., Huang, Q., Lian, X., He, Z.-f, Geng, S., et al.: Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field. Appl. Environ. Microbiol. 80(24), 7611–9 (2014)

    Article  Google Scholar 

  55. Wang, Y., Zhu, G., Harhangi, H.R., Zhu, B., Jetten, M.S., Yin, C., et al.: Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil. FEMS Microbiol. Lett. 336(2), 79–88 (2012)

    Article  Google Scholar 

  56. Zhu, G., Zhou, L., Wang, Y., Wang, S., Guo, J., Long, X.E., et al.: Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in Chinese wetland ecosystems. Environ. Microbiol. Rep. 7(1), 128–138 (2015)

    Article  Google Scholar 

  57. Li-dong, S., Qun, Z., Shuai, L., Ping, D., Jiang-ning, Z., Dong-qing, C., et al.: Molecular evidence for nitrite-dependent anaerobic methane-oxidising bacteria in the Jiaojiang Estuary of the East Sea (China). Appl. Microbiol. Biotechnol. 98(11), 5029–5038 (2014)

    Article  Google Scholar 

  58. Chen, J., Zhou, Z.-C., Gu, J.-D.: Occurrence and diversity of nitrite-dependent anaerobic methane oxidation bacteria in the sediments of the South China Sea revealed by amplification of both 16S rRNA and pmoA genes. Appl. Microbiol. Biotechnol. 98(12), 5685–5696 (2014)

    Article  Google Scholar 

  59. Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M., et al.: Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464(7288), 543–548 (2010)

    Article  Google Scholar 

  60. Luesken, F.A., Zhu, B., van Alen, T.A., Butler, M.K., Diaz, M.R., Song, B., et al.: pmoA primers for detection of anaerobic methanotrophs. Appl. Environ. Microbiol. (2011). https://doi.org/10.1128/AEM.02960-10

    Article  Google Scholar 

  61. Valentine, D.L., Reeburgh, W.S.: New perspectives on anaerobic methane oxidation. Environ. Microbiol. 2(5), 477–484 (2000)

    Article  Google Scholar 

  62. Zehnder, A.J., Brock, T.D.: Anaerobic methane oxidation: occurrence and ecology. Appl. Environ. Microbiol. 39(1), 194–204 (1980)

    Article  Google Scholar 

  63. Hoehler, T.M., Alperin, M.J., Albert, D.B., Martens, C.S.: Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochem. Cycles 8(4), 451–463 (1994)

    Article  Google Scholar 

  64. Thauer, R.K.: Biochemistry of methanogenesis: a tribute to Marjory Stephenson: 1998 Marjory Stephenson prize lecture. Microbiology 144(9), 2377–2406 (1998)

    Article  Google Scholar 

  65. Schreiber, L., Holler, T., Knittel, K., Meyerdierks, A., Amann, R.: Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ. Microbiol. 12(8), 2327–2340 (2010)

    Google Scholar 

  66. Beal, E.J., House, C.H., Orphan, V.J.: Manganese-and iron-dependent marine methane oxidation. Science 325(5937), 184–187 (2009)

    Article  Google Scholar 

  67. Knittel, K., Boetius, A., Lemke, A., Eilers, H., Lochte, K., Pfannkuche, O., et al.: Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon). Geomicrobiol. J. 20(4), 269–294 (2003)

    Article  Google Scholar 

  68. Orphan, V.J., House, C.H., Hinrichs, K.-U., McKeegan, K.D., DeLong, E.F.: Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293(5529), 484–487 (2001)

    Article  Google Scholar 

  69. Orphan, V.J., House, C.H., Hinrichs, K.-U., McKeegan, K.D., DeLong, E.F.: Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc. Natl. Acad. Sci. USA 99(11), 7663–7668 (2002)

    Article  Google Scholar 

  70. Treude, T., Krüger, K., Boetius, A., Jorgensen, B.: Environmental control on anaerobic oxidation of methane in gassy sediments of Eckernförde Bay (German Baltic). Limnol. Oceanogr. 50(6), 1771–1786 (2005)

    Article  Google Scholar 

  71. Lösekann, T., Knittel, K., Nadalig, T., Fuchs, B., Niemann, H., Boetius, A., et al.: Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano Barents sea. Appl. Environ. Microbiol. 73(10), 3348–3362 (2007)

    Article  Google Scholar 

  72. Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, et al: Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature. 491(7425), 541–546 (2012) http://www.nature.com/nature/journal/v491/n7425/abs/nature11656.html#supplementary-information

  73. Modin, O., Fukushi, K., Yamamoto, K.: Denitrification with methane as external carbon source. Water Res. 41(12), 2726–2738 (2007)

    Article  Google Scholar 

  74. Islas-Lima, S., Thalasso, F., Gomez-Hernandez, J.: Evidence of anoxic methane oxidation coupled to denitrification. Water Res. 38(1), 13–16 (2004)

    Article  Google Scholar 

  75. Zhu, B., Sánchez, J., van Alen, T.A., Sanabria, J., Jetten, M.S., Ettwig, K.F., et al.: Combined anaerobic ammonium and methane oxidation for nitrogen and methane removal. Portland Press Limited, London (2011)

    Book  Google Scholar 

  76. Rice, E.W., Baird, R.B., Eaton, A.D. (eds.): Standard methods for the examination of water and wastewater. Standard methods for the examination of water and wastewater. American Public Health Association, Washington (2017)

    Google Scholar 

  77. Luesken, F.A., van Alen, T.A., van der Biezen, E., Frijters, C., Toonen, G., Kampman, C., et al.: Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge. Appl. Microbiol. Biotechnol. 92(4), 845 (2011)

    Article  Google Scholar 

  78. Wegener, G., Krukenberg, V., Ruff, S.E., Kellermann, M.Y., Knittel, K.: Metabolic capabilities of microorganisms involved in and associated with the anaerobic oxidation of methane. Front. Microbiol. (2016). https://doi.org/10.3389/fmicb.2016.00046

    Article  Google Scholar 

  79. Lee, H.-S., Tang, Y., Rittmann, B.E., Zhao, H.-P.: Anaerobic oxidation of methane coupled to denitrification: fundamentals, challenges, and potential. Crit. Rev. Environ. Sci. Technol. 48(19–21), 1067–1093 (2018)

    Article  Google Scholar 

  80. Wang, D., Wang, Y., Liu, Y., Ngo, H.H., Lian, Y., Zhao, J., et al.: Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment plants? Biores. Technol. 234, 456–465 (2017). https://doi.org/10.1016/j.biortech.2017.02.059

    Article  Google Scholar 

  81. Liu, T., Hu, S., Guo, J.: Enhancing mainstream nitrogen removal by employing nitrate/nitrite-dependent anaerobic methane oxidation processes. Crit. Rev. Biotechnol. 39(5), 732–745 (2019)

    Article  Google Scholar 

  82. Welte, C.U., Rasigraf, O., Vaksmaa, A., Versantvoort, W., Arshad, A., Op den Camp, H.J., et al.: Nitrate-and nitrite-dependent anaerobic oxidation of methane. Environ. Microbiol. Rep. 8(6), 941–55 (2016)

    Article  Google Scholar 

  83. Costa, C., Dijkema, C., Friedrich, M., Garcia-Encina, P., Fernandez-Polanco, F., Stams, A.: Denitrification with methane as electron donor in oxygen-limited bioreactors. Appl. Microbiol. Biotechnol. 53(6), 754–762 (2000)

    Article  Google Scholar 

  84. Jena, U., Das, K.C.: Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy Fuels 25(11), 5472–82 (2011)

    Article  Google Scholar 

  85. Akhtar, J., Amin, N.A.S.: A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 15(3), 1615–24 (2011)

    Article  Google Scholar 

  86. Jena, U., Das, K.C., Kastner, J.R.: Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Biores. Technol. 102(10), 6221–6229 (2011)

    Article  Google Scholar 

  87. Yin, S., Dolan, R., Harris, M., Tan, Z.: Subcritical hydrothermal liquefaction of cattle manure to bio-oil: effects of conversion parameters on bio-oil yield and characterization of bio-oil. Biores. Technol. 101(10), 3657–64 (2010)

    Article  Google Scholar 

  88. Biller, P., Ross, A.B.: Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Biores. Technol. 102(1), 215–25 (2011)

    Article  Google Scholar 

  89. Liang, Y., Yesuf, J., Schmitt, S., Bender, K., Bozzola, J.: Study of cellulases from a newly-isolated thermophilic and cellulolytic Brevibacillus sp. strain JXL. J. Ind. Microbiol. Biotechnol. 36, 961–70 (2009)

    Article  Google Scholar 

  90. Liang, Y., Feng, Z., Yesuf, J., Blackburn, J.W.: Optimization of growth medium and enzyme assay conditions for crude cellulases produced by a novel thermophilic and cellulolytic bacterium, Anoxybacillus sp. 527. Appl. Biochem. Biotechnol. 160, 1841–52 (2010)

    Article  Google Scholar 

  91. Bi, Z., Zhang, J., Peterson, E., Zhu, Z., Xia, C., Liang, Y., et al.: Biocrude from pretreated sorghum bagasse through catalytic hydrothermal liquefaction. Fuel 188, 112–120 (2017). https://doi.org/10.1016/j.fuel.2016.10.039

    Article  Google Scholar 

  92. Zhu, Y., Lee, Y., Elander, R.T.: Dilute-acid pretreatment of corn stover using a high-solids percolation reactor. Appl. Biochem. Biotechnol. 117(2), 103–114 (2004)

    Article  Google Scholar 

  93. Wyman, C.E., Decker, S.R., Himmel, M.E., Brady, J.W., Skopec, C.E., Viikari, L.: Hydrolysis of cellulose and hemicellulose. Polysaccharides: structural diversity and functional versatility. Sci Res 1, 1023–62 (2005)

    Google Scholar 

  94. Brebu, M., Vasile, C.: Thermal degradation of lignin—a review. Cellul. Chem. Technol. 44(9), 353 (2010)

    Google Scholar 

  95. He, B.J., Zhang, Y., Yin, Y., Funk, T.L., Riskowski, G.L.: Operating temperature and retention time effects on the thermochemical conversion process of swine manure. Trans. ASAE Am. Soc. Agric. Eng. 43(6), 1821–1826 (2000)

    Article  Google Scholar 

  96. White, D.H., Wolf, D.: Direct biomass liquefaction by an extruder-feeder system. Chem. Eng. Commun. 135(1), 1–19 (1995). https://doi.org/10.1080/00986449508936335

    Article  Google Scholar 

  97. Goudnaan, F., van de Beld, B., Boerefijn, F.R., Bos, G.M., Naber, J.E., van der Wal, S., et al.: Thermal efficiency of the HTU® process for biomass liquefaction. In: Bridgwater, A.V. (ed.) Progress in thermochemical biomass conversion, pp. 1312–25. Blackwell Science Ltd, Oxford (2008)

    Google Scholar 

  98. Minowa, T., Murakami, M., Dote, Y., Ogi, T., Yokoyama, S.-y: Oil production from garbage by thermochemical liquefaction. Biomass Bioenergy 8(2), 117–20 (1995)

    Article  Google Scholar 

  99. Minowa, T., Yokoyama, S.-y, Kishimoto, M., Okakura, T.: Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74(12), 1735–8 (1995). https://doi.org/10.1016/0016-2361(95)80001-X

    Article  Google Scholar 

  100. Shuping, Z., Yulong, W., Mingde, Y., Kaleem, I., Chun, L., Tong, J.: Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy 35(12), 5406–11 (2010)

    Article  Google Scholar 

  101. Peterson, A.A., Vogel, F., Lachance, R.P., Froling, M., Antal, M.J., Jr., Tester, J.W.: Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energy Environ. Sci. 1(1), 32–65 (2008)

    Article  Google Scholar 

  102. Abu El-Rub, Z., Bramer, E.A., Brem, G.: Review of catalysts for tar elimination in biomass gasification processes. Ind. Eng. Chem. Res. 43(22), 6911–6919 (2004)

    Article  Google Scholar 

  103. Wainaina, S., Parchami, M., Mahboubi, A., Horváth, I.S., Taherzadeh, M.J.: Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor. Biores. Technol. 274, 329–334 (2019). https://doi.org/10.1016/j.biortech.2018.11.104

    Article  Google Scholar 

  104. Zhang, B., von Keitz, M., Valentas, K.: Thermochemical liquefaction of high-diversity grassland perennials. J. Anal. Appl. Pyrol. 84(1), 18–24 (2009)

    Article  Google Scholar 

  105. Skaggs, R.L., Coleman, A.M., Seiple, T.E., Milbrandt, A.R.: Waste-to-energy biofuel production potential for selected feedstocks in the conterminous United States. Renew. Sustain. Energy Rev. 82, 2640–2651 (2018)

    Article  Google Scholar 

  106. Kostyukevich, Y., Vlaskin, M., Borisova, L., Zherebker, A., Perminova, I., Kononikhin, A., et al.: Investigation of bio-oil produced by hydrothermal liquefaction of food waste using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry. Eur. J. Mass Spectrom. 24(1), 116–123 (2018)

    Article  Google Scholar 

  107. Maddi, B., Panisko, E., Wietsma, T., Lemmon, T., Swita, M., Albrecht, K., et al.: Quantitative characterization of aqueous byproducts from hydrothermal liquefaction of municipal wastes, food industry wastes, and biomass grown on waste. ACS Sustain. Chem. Eng. 5(3), 2205–2214 (2017)

    Article  Google Scholar 

  108. Cantero-Tubilla, B., Cantero, D.A., Martinez, C.M., Tester, J.W., Walker, L.P., Posmanik, R.: Characterization of the solid products from hydrothermal liquefaction of waste feedstocks from food and agricultural industries. J. Supercrit. Fluids 133, 665–673 (2018). https://doi.org/10.1016/j.supflu.2017.07.009

    Article  Google Scholar 

  109. Gollakota, A., Savage, P.E.: Hydrothermal liquefaction of model food waste biomolecules and ternary mixtures under isothermal and fast conditions. ACS Sustain. Chem. Eng. 6(7), 9018–9027 (2018)

    Article  Google Scholar 

  110. Posmanik, R., Labatut, R.A., Kim, A.H., Usack, J.G., Tester, J.W., Angenent, L.T.: Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Biores. Technol. 233, 134–143 (2017). https://doi.org/10.1016/j.biortech.2017.02.095

    Article  Google Scholar 

  111. Posmanik, R., Martinez, C.M., Cantero-Tubilla, B., Cantero, D.A., Sills, D., Cocero, M.J., et al.: Acid and alkali catalyzed hydrothermal liquefaction of dairy manure digestate and food waste. ACS Sustain. Chem. Eng. 6(2), 2724–2732 (2018)

    Article  Google Scholar 

  112. Maag, A.R., Paulsen, A.D., Amundsen, T.J., Yelvington, P.E., Tompsett, G.A., Timko, M.T.: Catalytic hydrothermal liquefaction of food waste using CeZrOx. Energies 11(3), 564 (2018)

    Article  Google Scholar 

  113. Déniel, M., Haarlemmer, G., Roubaud, A., Weiss-Hortala, E., Fages, J.: Modelling and predictive study of hydrothermal liquefaction: application to food processing residues. Waste Biomass Valor. 8(6), 2087–2107 (2017)

    Article  Google Scholar 

  114. Aierzhati, A., Stablein, M.J., Wu, N.E., Kuo, C.-T., Si, B., Kang, X., et al.: Experimental and model enhancement of food waste hydrothermal liquefaction with combined effects of biochemical composition and reaction conditions. Biores. Technol. 284, 139–147 (2019). https://doi.org/10.1016/j.biortech.2019.03.076

    Article  Google Scholar 

  115. Xiu, S., Shahbazi, A.: Bio-oil production and upgrading research: a review. Renew. Sustain. Energy Rev. 16(7), 4406–4414 (2012). https://doi.org/10.1016/j.rser.2012.04.028

    Article  Google Scholar 

  116. Toor, S.S., Rosendahl, L., Rudolf, A.: Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36(5), 2328–2342 (2011)

    Article  Google Scholar 

  117. Dimitriadis, A., Bezergianni, S.: Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: a state of the art review. Renew. Sustain. Energy Rev. 68, 113–125 (2017). https://doi.org/10.1016/j.rser.2016.09.120

    Article  Google Scholar 

  118. Barreiro, D.L., Prins, W., Ronsse, F., Brilman, W.: Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass Bioenerg. 53, 113–127 (2013)

    Article  Google Scholar 

  119. Tian, C., Li, B., Liu, Z., Zhang, Y., Lu, H.: Hydrothermal liquefaction for algal biorefinery: a critical review. Renew. Sustain. Energy Rev. 38, 933–950 (2014)

    Article  Google Scholar 

  120. Guo, Y., Yeh, T., Song, W., Xu, D., Wang, S.: A review of bio-oil production from hydrothermal liquefaction of algae. Renew. Sustain. Energy Rev. 48, 776–790 (2015)

    Article  Google Scholar 

  121. Qian, L., Wang, S., Savage, P.E.: Hydrothermal liquefaction of sewage sludge under isothermal and fast conditions. Biores. Technol. 232, 27–34 (2017)

    Article  Google Scholar 

  122. Snowden-Swan, L.J., Zhu, Y., Jones, S.B., Elliott, D.C., Schmidt, A.J., Hallen, R.T., et al.: Hydrothermal liquefaction and upgrading of municipal wastewater treatment plant sludge: a preliminary techno-economic analysis, rev. 1. Pacific Northwest National Lab, Richland (2016)

    Book  Google Scholar 

  123. Jarvis, J.M., Albrecht, K.O., Billing, J.M., Schmidt, A.J., Hallen, R.T., Schaub, T.M.: Assessment of hydrotreatment for hydrothermal liquefaction biocrudes from sewage sludge, microalgae, and pine feedstocks. Energy Fuels 32(8), 8483–8493 (2018)

    Article  Google Scholar 

  124. Liu, R., Tian, W., Kong, S., Meng, Y., Wang, H., Zhang, J.: Effects of inorganic and organic acid pretreatments on the hydrothermal liquefaction of municipal secondary sludge. Energy Convers. Manage. 174, 661–667 (2018)

    Article  Google Scholar 

  125. Kapusta, K.: Effect of ultrasound pretreatment of municipal sewage sludge on characteristics of bio-oil from hydrothermal liquefaction process. Waste Manage. 78, 183–190 (2018). https://doi.org/10.1016/j.wasman.2018.05.043

    Article  Google Scholar 

  126. Domingo, J.L., Nadal, M.: Per-and polyfluoroalkyl substances (PFASs) in food and human dietary intake: a review of the recent scientific literature. J. Agric. Food Chem. 65(3), 533–543 (2017)

    Article  Google Scholar 

  127. Herzke, D., Huber, S., Bervoets, L., D’Hollander, W., Hajslova, J., Pulkrabova, J., et al.: Perfluorinated alkylated substances in vegetables collected in four European countries; occurrence and human exposure estimations. Environ. Sci. Pollut. Res. 20(11), 7930–7939 (2013)

    Article  Google Scholar 

  128. Hlouskova, V., Hradkova, P., Poustka, J., Brambilla, G., De Filipps, S.P., D’Hollander, W., et al.: Occurrence of perfluoroalkyl substances (PFASs) in various food items of animal origin collected in four European countries. Food Addit. Contam. A. 30(11), 1918–1932 (2013)

    Article  Google Scholar 

  129. D’Hollander, W., Herzke, D., Huber, S., Hajslova, J., Pulkrabova, J., Brambilla, G., et al.: Occurrence of perfluorinated alkylated substances in cereals, salt, sweets and fruit items collected in four European countries. Chemosphere 129, 179–185 (2015)

    Article  Google Scholar 

  130. Klenow, S., Heinemeyer, G., Brambilla, G., Dellatte, E., Herzke, D., de Voogt, P.: Dietary exposure to selected perfluoroalkyl acids (PFAAs) in four European regions. Food Addit. Contam. A. 30(12), 2141–2151 (2013)

    Article  Google Scholar 

  131. Heo, J.-J., Lee, J.-W., Kim, S.-K., Oh, J.-E.: Foodstuff analyses show that seafood and water are major perfluoroalkyl acids (PFAAs) sources to humans in Korea. J. Hazard. Mater. 279, 402–409 (2014)

    Article  Google Scholar 

  132. Pérez, F., Llorca, M., Köck-Schulmeyer, M., Škrbić, B., Oliveira, L.S., da Boit, M.K., et al.: Assessment of perfluoroalkyl substances in food items at global scale. Environ. Res. 135, 181–189 (2014)

    Article  Google Scholar 

  133. Authority EFS: Perfluoroalkylated substances in food: occurrence and dietary exposure. EFSA J. 10(6), 2743 (2012)

    Google Scholar 

  134. Clarke, D., Bailey, V., Routledge, A., Lloyd, A., Hird, S., Mortimer, D., et al.: Dietary intake estimate for perfluorooctanesulphonic acid (PFOS) and other perfluorocompounds (PFCs) in UK retail foods following determination using standard addition LC–MS/MS. Food Addit. Contam. 27(4), 530–545 (2010)

    Article  Google Scholar 

  135. Tittlemier, S.A., Pepper, K., Seymour, C., Moisey, J., Bronson, R., Cao, X.-L., et al.: Dietary exposure of Canadians to perfluorinated carboxylates and perfluorooctane sulfonate via consumption of meat, fish, fast foods, and food items prepared in their packaging. J. Agric. Food Chem. 55(8), 3203–3210 (2007)

    Article  Google Scholar 

  136. Bhavsar, S.P., Zhang, X., Guo, R., Braekevelt, E., Petro, S., Gandhi, N., et al.: Cooking fish is not effective in reducing exposure to perfluoroalkyl and polyfluoroalkyl substances. Environ. Int. 66, 107–114 (2014). https://doi.org/10.1016/j.envint.2014.01.024

    Article  Google Scholar 

  137. Lechner, M., Knapp, H.: Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. Sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis sativus). J. Agric. Food Chem. 59(20), 11011–8 (2011)

    Article  Google Scholar 

  138. Blaine, A.C., Rich, C.D., Hundal, L.S., Lau, C., Mills, M.A., Harris, K.M., et al.: Uptake of perfluoroalkyl acids into edible crops via land applied biosolids: field and greenhouse studies. Environ. Sci. Technol. 47(24), 14062–14069 (2013)

    Article  Google Scholar 

  139. Blaine, A.C., Rich, C.D., Sedlacko, E.M., Hundal, L.S., Kumar, K., Lau, C., et al.: Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils. Environ. Sci. Technol. 48(14), 7858–7865 (2014)

    Article  Google Scholar 

  140. Scher, D.P., Kelly, J.E., Huset, C.A., Barry, K.M., Hoffbeck, R.W., Yingling, V.L., et al.: Occurrence of perfluoroalkyl substances (PFAS) in garden produce at homes with a history of PFAS-contaminated drinking water. Chemosphere 196, 548–555 (2018)

    Article  Google Scholar 

  141. Xiao, F.: Emerging poly- and perfluoroalkyl substances in the aquatic environment: a review of current literature. Water Res. 124, 482–495 (2017). https://doi.org/10.1016/j.watres.2017.07.024

    Article  Google Scholar 

  142. Schaider, L.A., Balan, S.A., Blum, A., Andrews, D.Q., Strynar, M.J., Dickinson, M.E., et al.: Fluorinated compounds in US fast food packaging. Environ. Sci. Technol. Lett. 4(3), 105–111 (2017)

    Article  Google Scholar 

  143. Schultes, L., Peaslee, G.F., Brockman, J.D., Majumdar, A., McGuinness, S.R., Wilkinson, J.T., et al.: Total fluorine measurements in food packaging: how do current methods perform? Environ. Sci. Technol. Lett. 6(2), 73–78 (2019)

    Article  Google Scholar 

  144. Yeung, L.W., Robinson, S.J., Koschorreck, J., Mabury, S.A.: Part II. A temporal study of PFOS and its precursors in human plasma from two German cities in 1982–2009. Environ. Sci. Technol. 47(8), 3875–82 (2013)

    Article  Google Scholar 

  145. Trier, X., Granby, K., Christensen, J.H.: Polyfluorinated surfactants (PFS) in paper and board coatings for food packaging. Environ. Sci. Pollut. Res. 18(7), 1108–1120 (2011)

    Article  Google Scholar 

  146. Trier, X., Nielsen, N.J., Christensen, J.H.: Structural isomers of polyfluorinated di-and tri-alkylated phosphate ester surfactants present in industrial blends and in microwave popcorn bags. Environ. Sci. Pollut. Res. 18(8), 1422–1432 (2011)

    Article  Google Scholar 

  147. Begley, T., White, K., Honigfort, P., Twaroski, M., Neches, R., Walker, R.: Perfluorochemicals: potential sources of and migration from food packaging. Food Addit. Contam. 22(10), 1023–1031 (2005)

    Article  Google Scholar 

  148. Begley, T., Hsu, W., Noonan, G., Diachenko, G.: Migration of fluorochemical paper additives from food-contact paper into foods and food simulants. Food Addit. Contam. 25(3), 384–390 (2008)

    Article  Google Scholar 

  149. Choi, Y.J., Kim Lazcano, R., Yousefi, P., Trim, H., Lee, L.S.: Perfluoroalkyl acid characterization in US municipal organic solid waste composts. Environ. Sci. Technol. Lett. 6(6), 372–377 (2019)

    Article  Google Scholar 

  150. Maine Department of Environmental Protection. https://www.maine.gov/dep/spills/topics/pfas/Maine-PFAS-Screening-Levels-Rev-6.28.21.pdf

  151. Ross, I., McDonough, J., Miles, J., Storch, P., Thelakkat Kochunarayanan, P., Kalve, E., et al.: A review of emerging technologies for remediation of PFASs. Remediat. J. 28(2), 101–126 (2018)

    Article  Google Scholar 

  152. Kucharzyk, K.H., Darlington, R., Benotti, M., Deeb, R., Hawley, E.: Novel treatment technologies for PFAS compounds: a critical review. J. Environ. Manage. 204, 757–764 (2017). https://doi.org/10.1016/j.jenvman.2017.08.016

    Article  Google Scholar 

  153. McCleaf, P., Englund, S., Östlund, A., Lindegren, K., Wiberg, K., Ahrens, L.: Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests. Water Res. 120, 77–87 (2017). https://doi.org/10.1016/j.watres.2017.04.057

    Article  Google Scholar 

  154. ITRC.: Remediation technologies and methods for per and polyfluoroalkyl substances (PFAS).https://www.pfas-1itrcweborg/wp-content/uploads/2018/03/pfas_fact_sheet_remediation_3_15_18pdf (2018)

  155. Zhang, D., Zhang, W., Liang, Y.: Adsorption of perfluoroalkyl and polyfluoroalkyl substances (PFASs) from aqueous solution—a review. Sci. Total Environ. 694, 133606 (2019)

    Article  Google Scholar 

  156. Zhang, D., He, Q., Wang, M., Zhang, W., Liang, Y.: Sorption of perfluoroalkylated substances (PFASs) onto granular activated carbon and biochar. Environ. Technol. (2019). https://doi.org/10.1080/09593330.2019.1680744

    Article  Google Scholar 

  157. Bao, Y., Niu, J., Xu, Z., Gao, D., Shi, J., Sun, X., et al.: Removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from water by coagulation: mechanisms and influencing factors. J. Colloid Interface Sci. 434, 59–64 (2014)

    Article  Google Scholar 

  158. Birk, G., Alden, D., Stuart, R.: Ex situ treatments of aqueous film-forming foam impacted water. American Chemical Society, Washington (2016)

    Google Scholar 

  159. Yang, B., Han, Y., Deng, Y., Li, Y., Zhuo, Q., Wu, J.: Highly efficient removal of perfluorooctanoic acid from aqueous solution by H2O2-enhanced electrocoagulation-electroflotation technique. Emerging Contaminants. 2(1), 49–55 (2016)

    Article  Google Scholar 

  160. Lin, H., Wang, Y., Niu, J., Yue, Z., Huang, Q.: Efficient sorption and removal of perfluoroalkyl acids (PFAAs) from aqueous solution by metal hydroxides generated in situ by electrocoagulation. Environ. Sci. Technol. 49(17), 10562–10569 (2015)

    Article  Google Scholar 

  161. Tang, C.Y., Fu, Q.S., Robertson, A., Criddle, C.S., Leckie, J.O.: Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. Environ. Sci. Technol. 40(23), 7343–7349 (2006)

    Article  Google Scholar 

  162. Flores, C., Ventura, F., Martin-Alonso, J., Caixach, J.: Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in N.E. Spanish surface waters and their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines. Sci. Total Environ. 461–462, 618–26 (2013). https://doi.org/10.1016/j.scitotenv.2013.05.026

    Article  Google Scholar 

  163. Tang, C.Y., Fu, Q.S., Criddle, C.S., Leckie, J.O.: Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environ. Sci. Technol. 41(6), 2008–2014 (2007)

    Article  Google Scholar 

  164. Steinle-Darling, E., Reinhard, M.: Nanofiltration for trace organic contaminant removal: structure, solution, and membrane fouling effects on the rejection of perfluorochemicals. Environ. Sci. Technol. 42(14), 5292–5297 (2008)

    Article  Google Scholar 

  165. Loi-Brügger, A., Panglisch, S., Hoffmann, G., Buchta, P., Gimbel, R., Nacke, C.-J.: Removal of trace organic substances from river bank filtrate–performance study of RO and NF membranes. Water Science and Technology: Water Supply. 8(1), 85–92 (2008)

    Google Scholar 

  166. Tsai, Y.-T., Yu-Chen Lin, A., Weng, Y.-H., Li, K.-C.: Treatment of perfluorinated chemicals by electro-microfiltration. Environ. Sci. Technol. 44(20), 7914–7920 (2010)

    Article  Google Scholar 

  167. Eberle, D., Ball, R., Boving, T.B.: Impact of ISCO treatment on PFAA co-contaminants at a former fire training area. Environ. Sci. Technol. 51(9), 5127–5136 (2017)

    Article  Google Scholar 

  168. Huang, J., Wang, X., Pan, Z., Li, X., Ling, Y., Li, L.: Efficient degradation of perfluorooctanoic acid (PFOA) by photocatalytic ozonation. Chem. Eng. J. 296, 329–334 (2016)

    Article  Google Scholar 

  169. Vecitis, C.D., Park, H., Cheng, J., Mader, B.T., Hoffmann, M.R.: Kinetics and mechanism of the sonolytic conversion of the aqueous perfluorinated surfactants, perfluorooctanoate (PFOA), and perfluorooctane sulfonate (PFOS) into inorganic products. J. Phys. Chem. A 112(18), 4261–4270 (2008)

    Article  Google Scholar 

  170. Lee, Y.-C., Chen, M.-J., Huang, C.-P., Kuo, J., Lo, S.-L.: Efficient sonochemical degradation of perfluorooctanoic acid using periodate. Ultrason. Sonochem. 31, 499–505 (2016)

    Article  Google Scholar 

  171. Hao, F., Guo, W., Wang, A., Leng, Y., Li, H.: Intensification of sonochemical degradation of ammonium perfluorooctanoate by persulfate oxidant. Ultrason. Sonochem. 21(2), 554–558 (2014)

    Article  Google Scholar 

  172. Lin, J.-C., Hu, C.-Y., Lo, S.-L.: Effect of surfactants on the degradation of perfluorooctanoic acid (PFOA) by ultrasonic (US) treatment. Ultrason. Sonochem. 28, 130–135 (2016)

    Article  Google Scholar 

  173. Zhuo, Q., Li, X., Yan, F., Yang, B., Deng, S., Huang, J., et al.: Electrochemical oxidation of 1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS) on DSA electrode: operating parameters and mechanism. J. Environ. Sci. 26(8), 1733–1739 (2014)

    Article  Google Scholar 

  174. Gomez-Ruiz, B., Gómez-Lavín, S., Diban, N., Boiteux, V., Colin, A., Dauchy, X., et al.: Efficient electrochemical degradation of poly-and perfluoroalkyl substances (PFASs) from the effluents of an industrial wastewater treatment plant. Chem. Eng. J. 322, 196–204 (2017)

    Article  Google Scholar 

  175. Schaefer, C.E., Andaya, C., Burant, A., Condee, C.W., Urtiaga, A., Strathmann, T.J., et al.: Electrochemical treatment of perfluorooctanoic acid and perfluorooctane sulfonate: insights into mechanisms and application to groundwater treatment. Chem. Eng. J. 317, 424–432 (2017)

    Article  Google Scholar 

  176. Schaefer, C.E., Andaya, C., Urtiaga, A., McKenzie, E.R., Higgins, C.P.: Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs). J. Hazard. Mater. 295, 170–175 (2015)

    Article  Google Scholar 

  177. Trautmann, A., Schell, H., Schmidt, K., Mangold, K.-M., Tiehm, A.: Electrochemical degradation of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater. Water Sci. Technol. 71(10), 1569–1575 (2015)

    Article  Google Scholar 

  178. Chen, J., Zhang, P., Zhang, L.: Photocatalytic decomposition of environmentally persistent perfluorooctanoic acid. Chem. Lett. 35(2), 230–231 (2006)

    Article  Google Scholar 

  179. Zhang, C., Qu, Y., Zhao, X., Zhou, Q.: Photoinduced reductive decomposition of perflurooctanoic acid in water: effect of temperature and ionic strength. CLEAN Soil Air Water 43(2), 223–8 (2015)

    Article  Google Scholar 

  180. Liu, J., Mejia, A.S.: Microbial degradation of polyfluoroalkyl chemicals in the environment: a review. Environ. Int. 61, 98–114 (2013). https://doi.org/10.1016/j.envint.2013.08.022

    Article  Google Scholar 

  181. Wang, N., Buck, R.C., Szostek, B., Sulecki, L.M., Wolstenholme, B.W.: 5:3 Polyfluorinated acid aerobic biotransformation in activated sludge via novel “one-carbon removal pathways.” Chemosphere 87(5), 527–534 (2012). https://doi.org/10.1016/j.chemosphere.2011.12.056

    Article  Google Scholar 

  182. Wang, N., Liu, J., Buck, R.C., Korzeniowski, S.H., Wolstenholme, B.W., Folsom, P.W., et al.: 6:2 Fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants. Chemosphere 82(6), 853–858 (2011)

    Article  Google Scholar 

  183. Wang, N., Szostek, B., Buck, R.C., Folsom, P.W., Sulecki, L.M., Capka, V., et al.: Fluorotelomer alcohol biodegradation direct evidence that perfluorinated carbon chains breakdown. Environ. Sci. Technol. 39(19), 7516–7528 (2005)

    Article  Google Scholar 

  184. Wang, N., Szostek, B., Buck, R.C., Folsom, P.W., Sulecki, L.M., Gannon, J.T.: 8–2 Fluorotelomer alcohol aerobic soil biodegradation: pathways, metabolites, and metabolite yields. Chemosphere 75(8), 1089–1096 (2009). https://doi.org/10.1016/j.chemosphere.2009.01.033

    Article  Google Scholar 

  185. Wang, N., Szostek, B., Folsom, P.W., Sulecki, L.M., Capka, V., Buck, R.C., et al.: Aerobic biotransformation of 14C-labeled 8–2 telomer B alcohol by activated sludge from a domestic sewage treatment plant. Environ. Sci. Technol. 39(2), 531–538 (2005)

    Article  Google Scholar 

  186. Zhao, L., Folsom, P.W., Wolstenholme, B.W., Sun, H., Wang, N., Buck, R.C.: 6:2 Fluorotelomer alcohol biotransformation in an aerobic river sediment system. Chemosphere 90(2), 203–209 (2013). https://doi.org/10.1016/j.chemosphere.2012.06.035

    Article  Google Scholar 

  187. Harding-Marjanovic, K.C., Houtz, E.F., Yi, S., Field, J.A., Sedlak, D.L., Alvarez-Cohen, L.: Aerobic biotransformation of fluorotelomer thioether amido sulfonate (Lodyne) in AFFF-amended microcosms. Environ. Sci. Technol. 49(13), 7666–7674 (2015)

    Article  Google Scholar 

  188. Liou, J.S.C., Szostek, B., DeRito, C.M., Madsen, E.L.: Investigating the biodegradability of perfluorooctanoic acid. Chemosphere 80(2), 176–183 (2010). https://doi.org/10.1016/j.chemosphere.2010.03.009

    Article  Google Scholar 

  189. Yi, L., Chai, L., Xie, Y., Peng, Q., Peng, Q.: Isolation, identification, and degradation performance of a PFOA-degrading strain. Genet. Mol. Res. (2016). https://doi.org/10.4238/gmr.15028043

    Article  Google Scholar 

  190. Yi, L., Peng, Q., Liu, D., Zhou, L., Tang, C., Zhou, Y., et al.: Enhanced degradation of perfluorooctanoic acid by a genome shuffling-modified Pseudomonas parafulva YAB-1. Environ. Technol. (2018). https://doi.org/10.1080/09593330.2018.1466918

    Article  Google Scholar 

  191. Kwon, B.G.: Reply to comment on “biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant.” Chemosphere 138, 1039–1044 (2015). https://doi.org/10.1016/j.chemosphere.2015.03.021

    Article  Google Scholar 

  192. Kwon, B.G., Lim, H.-J., Na, S.-H., Choi, B.-I., Shin, D.-S., Chung, S.-Y.: Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant. Chemosphere 109, 221–225 (2014). https://doi.org/10.1016/j.chemosphere.2014.01.072

    Article  Google Scholar 

  193. Avendaño, S.M., Zhong, G., Liu, J.: Comment on “biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant.” Chemosphere 138, 1037–1038 (2015)

    Article  Google Scholar 

  194. Huang, S., Jaffé, P.R.: Defluorination of perfluorooctanoic Acid (PFOA) and perfluorooctane sulfonate (PFOS) by Acidimicrobium sp. strain A6. Environ. Sci. Technol. 53(19), 11410–9 (2019)

    Article  Google Scholar 

  195. Hori, H., Nagaoka, Y., Yamamoto, A., Sano, T., Yamashita, N., Taniyasu, S., et al.: Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water. Environ. Sci. Technol. 40(3), 1049–1054 (2006)

    Article  Google Scholar 

  196. Hori, H., Nagaoka, Y., Sano, T., Kutsuna, S.: Iron-induced decomposition of perfluorohexanesulfonate in sub-and supercritical water. Chemosphere 70(5), 800–806 (2008)

    Article  Google Scholar 

  197. Wu, B., Hao, S., Choi, Y., Higgins, C.P., Deeb, R., Strathmann, T.J.: Rapid destruction and defluorination of perfluorooctanesulfonate by alkaline hydrothermal reaction. Environ. Sci. Technol. Lett. 6(10), 630–636 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Bioenergy Technology Office Award Number DE-EE0008932.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanna Liang.

Ethics declarations

Conflict of interest

The author declares no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y. A Critical Review of Challenges Faced by Converting Food Waste to Bioenergy Through Anaerobic Digestion and Hydrothermal Liquefaction. Waste Biomass Valor 13, 781–796 (2022). https://doi.org/10.1007/s12649-021-01540-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01540-9

Keywords

Navigation