Skip to main content
Log in

Distribution and Diversity of Nitrite-Dependent Anaerobic Methane-Oxidising Bacteria in the Sediments of the Qiantang River

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Nitrite-dependent anaerobic methane oxidation (n-damo) process was reported to be mediated by “Candidatus Methylomirabilis oxyfera”, which belongs to the candidate phylum NC10. M. oxyfera-like bacteria have been detected in lake ecosystems, while their distribution, diversity and abundance in river ecosystems have not been well studied. In this study, both the 16S rRNA and the pmoA molecular biomarkers confirmed the presence of diverse NC10 phylum bacteria related to M. oxyfera in a river ecosystem—the Qiantang River, Zhejiang Province (China). Phylogenetic analysis of 16S rRNA genes demonstrated that the recovered M. oxyfera-like sequences could be grouped into several distinct clusters that exhibited 89.8 % to 98.9 % identity to the M. oxyfera 16S rRNA gene. Similarly, several different clusters of pmoA gene sequences were observed, and these clusters displayed 85.1–95.4 % sequence identity to the pmoA gene of M. oxyfera. Quantitative PCR showed that the abundance of M. oxyfera-like bacteria varied from 1.32 ± 0.16 × 106 to 1.03 ± 0.12 × 107 copies g (dry weight)−1. Correlation analysis demonstrated that the total inorganic nitrogen content, the ammonium content and the organic content of the sediment were important factors affecting the distribution of M. oxyfera-like bacterial groups in the examined sediments. This study demonstrated the distribution of diverse M. oxyfera-like bacteria and their correlation with environmental factors in Qiantang River sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boetius A, Ravenschlag K, Schubert CJ, Richert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  2. DeLong EF (2000) Microbiology – resolving a methane mystery. Nature 407:577–579

    Article  CAS  PubMed  Google Scholar 

  3. Deutzmann JS, Schink B (2011) Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Appl Environ Microbiol 77:4429–4436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJM (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10:3164–3173

    Article  CAS  PubMed  Google Scholar 

  5. Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MSM, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol 75:3656–3662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  CAS  PubMed  Google Scholar 

  7. Hill TCJ, Walsh KA, Harris JA, Moffett BF (2003) Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol 43:1–11

    Article  CAS  PubMed  Google Scholar 

  8. Hinrichs KU, Boetius A (2002) The anaerobic oxidation of methane: New insights in microbial ecology and biogeochemistry, p. 457–77. In G. Wefer, D. Billett, D. Hebbeln, BB. Jørgensen, M. Schlüter, and TCE. van- Weering, [eds.], Ocean margin systems. Springer-Verlag

  9. Hu BL, Zheng P, Tang CJ, Chen JW, van der Biezen E, Zhang L, Ni BJ, Jetten MSM, Yan J, Yu HQ, Kartal B (2010) Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Res 44:5014–5020

    Article  CAS  PubMed  Google Scholar 

  10. Hu BL, Shen LD, Zheng P, Hu AH, Chen TT, Cai C, Liu S, Lou LP (2012) Distribution and diversity of anaerobic ammonium-oxidizing bacteria in the sediments of the Qiantang River. Environ Microbial Rep 4:540–547

    Article  CAS  Google Scholar 

  11. Hu S, Zeng RJ, Keller J, Lant P, Yuan ZG (2011) Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process. Environ Microbiol Rep 3:315–319

    Article  CAS  PubMed  Google Scholar 

  12. Huang F, Wang X, Lou L, Zhou Z, Wu J (2010) Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Res 44:1562–1572

    Article  CAS  PubMed  Google Scholar 

  13. Intergovernmental Panel on Climate Change (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  14. Juretschko S, Timmermann G, Schmid MC, Schleifer KH, Pommerening-Röser A, Koops HP, Wagner M (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64:3042–3051

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Kampman C, Hendrickx TLG, Luesken FA, van Alen TA, Op den Camp HJM, Jetten MSM, Zeeman G, Buisman CJN, Temmink H (2012) Enrichment of denitrifying methanotrophic bacteria for application after direct low temperature anaerobic sewage treatment. J Hazard Mater 227–228:164–171

    Article  PubMed  Google Scholar 

  16. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  CAS  PubMed  Google Scholar 

  17. Kojima H, Tsutsumi M, Ishikawa K, Iwata T, Mußmann M, Fukui M (2012) Distribution of putative denitrifying methane oxidizing bacteria in sediment of a freshwater lake, Lake Biwa. Syst Appl Microbiol 35:233–238

    Article  CAS  PubMed  Google Scholar 

  18. Lin CM, Zhou HC, Gao S (2005) Sedimentary facies and evolution in the Qiantang River incised valley, eastern China. Mar Geo 219:235–239

    Article  Google Scholar 

  19. Liu S, Shen LD, Lou LP, Tian GM, Zheng P, Hu BL (2013) Spatial distribution and factors shaping the niche segregation of ammonia-oxidising microorganisms in Qiantang River, China. Appl Environ Microbiol 79:4065–4071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Luesken FA, van Alen TA, van der Biezen E, Frijters C, Toonen G, Kampman C, Hendrickx TLG, Zeeman G, Temmink H, Strous M, Op den Camp HJM, Jetten MSM (2011) Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge. Appl Microbiol Biotechnol 92:845–854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Luesken FA, Zhu B, van Alen TA, Butler MK, Rodriguez Diaz M, Song B, Op den Camp HJM, Jetten MSM, Ettwig KF (2011) pmoA primers for detection of anaerobic methanotrophs. Appl Environ Microbiol 11:3877–3880

    Article  Google Scholar 

  22. Lüke C, Frenzel P (2011) Potential of pmoA amplicon pyrosequencing for methanotroph diversity studies. Appl Environ Microbiol 77:6305–6309

    Article  PubMed Central  PubMed  Google Scholar 

  23. Miller KM, Sterling CR (2007) Sensitivity of nested PCR in the detection of low numbers of Giardia lamblia Cysts. Appl Environ Microbiol 73:5949–5950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Oremland RS (2010) NO connection with methane. Nature 464:500–501

    Article  CAS  PubMed  Google Scholar 

  25. Orphan VJ, House CH, Hinrichs KU, McKeegan KD, Delong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci U S A 99:7663–7668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damste JS, Op den Camp HJ, Jetten MS, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    Article  CAS  PubMed  Google Scholar 

  27. Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    Article  PubMed  Google Scholar 

  28. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Shen LD, He ZF, Zhu Q, Chen DQ, Lou LP, Xu XY, Zheng P, Hu BL (2012) Microbiology, ecology and application of the nitrite-dependent anaerobic methane oxidation process. Front Microbiol 7:1–7

    Google Scholar 

  30. Strous M, Jetten MSM (2004) Anaerobic oxidation of methane and ammonium. Annu Rev Microbiol 58:99–117

    Article  CAS  PubMed  Google Scholar 

  31. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mo Biol Evo 28:2731–2739

    Article  CAS  Google Scholar 

  32. ter Braak CJF, Šmilauer P (2002) CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5) Microcomputer Power. Ithaca NY, USA

    Google Scholar 

  33. Thauer RK, Shima S (2006) Biogeochemistry-Methane and microbes. Nature 440:878–879

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Zhu GB, Harhangi HR, Zhu BL, Jetten MSM, Yin CQ, Op den Camp HJ (2012) Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane oxidizing bacteria in a paddy soil. FEMS Microbiol Lett 336:79–88

    Article  CAS  PubMed  Google Scholar 

  35. Wilkinson DM (1999) The disturbing history of intermediate disturbance. Oikos 84:145–147

    Article  Google Scholar 

  36. Zhu BL, van Dijk G, Fritz C, Smolders AJP, Pol A, Jetten MSM, Ettwig KF (2012) Anaerobic oxidization of methane in a minerotrophic peatland: enrichment of nitrite-dependent methane-oxidizing bacteria. Appl Environ Microbiol 78:8657–8665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Zhu GB, Jetten MSM, Kuschk P, Ettwig KF, Yin CQ (2010) Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems. Appl Microbiol Biotechnol 86:1043–1055

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Natural Science Foundation (No. 51108408) and Shanghai Tongji Gao Tingyao Environmental Science and Technology Development Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-lan Hu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 291 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Ld., Liu, S., Zhu, Q. et al. Distribution and Diversity of Nitrite-Dependent Anaerobic Methane-Oxidising Bacteria in the Sediments of the Qiantang River. Microb Ecol 67, 341–349 (2014). https://doi.org/10.1007/s00248-013-0330-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0330-0

Keywords

Navigation