Skip to main content

Advertisement

Log in

Challenges and strategies for waste food anaerobic digestion: insights and future directions

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Anaerobic digestion has emerged as a promising technology for the treatment of food waste as a result of its ability to produce renewable energy and mitigate environmental concerns. This article explores the challenges associated with waste food and proposes feasible solutions with future directions to improve its efficiency and sustainability. The main challenge in the AD process is the variable composition of waste food, including moisture content, nutritional content, and the presence of inhibitory substances (lipids and high ammonia) that lead to process instability. Fast-less feasible solutions include pretreatment techniques to improve substrate degradability, co-digestion with complementary substrates, and optimization of process parameters. Future directions for the anaerobic digestion of waste food involve the integration of emerging technologies, i.e. in situ product recovery, bioelectronic systems, and hybrid systems to maximize resource recovery and energy generation. In addition, efficient monitoring development, control systems, modeling tools, and comprehensive technoeconomic assessments will aid in the optimization and scale-up of anaerobic digestion facilities. Furthermore, optimizing process parameters, such as temperature, pH, and hydraulic retention time, has proven effective in enhancing AD performance. Overall, this review article provides information on challenges faced by waste food anaerobic digestion presents feasible solutions, and highlights future directions to explore process parameters, pretreatment methods, innovative monitoring and control solutions, process modeling tools, and techno-economic assessments that will facilitate the efficient operation and scalability of waste food anaerobic digestion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data sets for the current study may be available from the corresponding author upon reasonable request.

References

  • Abbas, Y., Yun, S., Mehmood, A., Shah, F. A., Wang, K., Eldin, E. T., Al-Qahtani, W. H., Ali, S., & Bocchetta, P. (2023). Co-digestion of cow manure and food waste for biogas enhancement and nutrients revival in bio-circular economy. Chemosphere, 311, 137018. https://doi.org/10.1016/j.chemosphere.2022.137018

  • Achinas S. (2022). Critical Issues That Can Underpin the Drive for Sustainable Anaerobic Biorefinery. In Biotechnology for Zero Waste (pp. 473–489). https://doi.org/10.1002/9783527832064.ch31

  • Agrawal, A., Chaudhari, P. K., & Ghosh, P. (2023). Anaerobic digestion of fruit and vegetable waste: A critical review of associated challenges. Environmental Science and Pollution Research, 30, 24987–25012. https://doi.org/10.1007/s11356-022-21643-7

    Article  CAS  Google Scholar 

  • Akbay, H. E. G., Akarsu, C., Isik, Z., Belibagli, P., & Dizge, N. (2022a). Investigation of degradation potential of polyethylene microplastics in anaerobic digestion process using cosmetics industry wastewater. Biochemical Engineering Journal, 187, 108619. https://doi.org/10.1016/j.bej.2022.108619

    Article  CAS  Google Scholar 

  • Akbay, H. E. G., Deniz, F., Mazmanci, M. A., Deepanraj, B., & Dizge, N. (2022b). Investigation of anaerobic degradability and biogas production of the starch and industrial sewage mixtures. Sustainable Energy Technologies and Assessments, 52, 102054. https://doi.org/10.1016/j.seta.2022.102054

    Article  Google Scholar 

  • Alavi-Borazjani, S. A., Capela, I., & Tarelho, L. A. (2020). Over-acidification control strategies for enhanced biogas production from anaerobic digestion: A review. Biomass and Bioenergy, 143, 105833.

    Article  CAS  Google Scholar 

  • Aldieri, L., Brahmi, M., Bruno, B., & Vinci, C. P. (2021a). Circular economy business models: The complementarities with sharing economy and eco-innovations investments. Sustainability, 13, 12438.

    Article  Google Scholar 

  • Aldieri, L., Brahmi, M., Chen, X., & Vinci, C. P. (2021b). Knowledge spillovers and technical efficiency for cleaner production: An economic analysis from agriculture innovation. Journal of Cleaner Production, 320, 128830. https://doi.org/10.1016/j.jclepro.2021.128830

    Article  Google Scholar 

  • Ambaye, T. G., Rene, E. R., Nizami, A.-S., Dupont, C., Vaccari, M., & van Hullebusch, E. D. (2021). Beneficial role of biochar addition on the anaerobic digestion of food waste: A systematic and critical review of the operational parameters and mechanisms. Journal of Environmental Management, 290, 112537. https://doi.org/10.1016/j.jenvman.2021.112537

    Article  CAS  Google Scholar 

  • Ammar, K. A., Kheir, A. M. S., Ali, B. M., Sundarakani, B., & Manikas, I. (2023). Developing an analytical framework for estimating food security indicators in the United Arab Emirates: A review. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-03032-3

    Article  Google Scholar 

  • Ardra, S., & Barua, M. K. (2022). Inclusion of circular economy practices in the food supply chain: Challenges and possibilities for reducing food wastage in emerging economies like India. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-022-02630-x

    Article  Google Scholar 

  • Atelge, M. R., Atabani, A. E., Banu, J. R., Krisa, D., Kaya, M., Eskicioglu, C., Kumar, G., Lee, C., Yildiz, Y. Ş, Unalan, S., Mohanasundaram, R., & Duman, F. (2020). A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel, 270, 117494. https://doi.org/10.1016/j.fuel.2020.117494

    Article  CAS  Google Scholar 

  • Awan, U., Braathen, P., & Hannola, L. (2023). When and how the implementation of green human resource management and data-driven culture to improve the firm sustainable environmental development? Sustainable Development, 31, 2726–2740. https://doi.org/10.1002/sd.2543

    Article  Google Scholar 

  • Baena, A., Orjuela, A., Rakshit, S. K., Clark, J. H. (2022). Enzymatic hydrolysis of waste fats, oils and greases (FOGs): Status, prospective, and process intensification alternatives. Chemical Engineering and Processing-Process Intensification 108930.

  • Batini N (2019) Macroeconomic Gains from Reforming the Agri-Food Sector: The Case of France. International Monetary Fund.

  • Batinovic, S., Rose, J. J., Ratcliffe, J., Seviour, R. J., & Petrovski, S. (2021). Cocultivation of an ultrasmall environmental parasitic bacterium with lytic ability against bacteria associated with wastewater foams. Nature Microbiology, 6, 703–711. https://doi.org/10.1038/s41564-021-00892-1

    Article  CAS  Google Scholar 

  • Bella, K., & Rao, P. V. (2021). Anaerobic digestion of dairy wastewater: effect of different parameters and co-digestion options—A review. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01247-2

    Article  Google Scholar 

  • Bernstad, A. K., Cánovas, A., & Valle, R. (2017). Consideration of food wastage along the supply chain in lifecycle assessments: A mini-review based on the case of tomatoes. Waste Management & Research, 35, 29–39. https://doi.org/10.1177/0734242x16666945

    Article  Google Scholar 

  • Bi, L., & Haight, M. (2006). Anaerobic digestion and community development: A case study from Hainan province, China. Environment, Development and Sustainability, 9, 501–521. https://doi.org/10.1007/s10668-006-9034-7

    Article  Google Scholar 

  • Bong, C. P. C., Lim, L. Y., Lee, C. T., Klemeš, J. J., Ho, C. S., & Ho, W. S. (2018). The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion–A review. Journal of Cleaner Production, 172, 1545–1558. https://doi.org/10.1016/j.jclepro.2017.10.199

  • Budych-Gorzna, M., Smoczynski, M., & Oleskowicz-Popiel, P. (2016). Enhancement of biogas production at the municipal wastewater treatment plant by co-digestion with poultry industry waste. Applied Energy, 161, 387–394. https://doi.org/10.1016/j.apenergy.2015.10.0

  • Caldeira, C., Vlysidis, A., Fiore, G., De Laurentiis, V., Vignali, G., & Sala, S. (2020). Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment. Bioresource Technology, 312, 123575. https://doi.org/10.1016/j.biortech.2020.123575

    Article  CAS  Google Scholar 

  • Carmona Cabello, M., Lopez Garcia, I., Leiva, D., & Dorado, M. (2018). Valorization of food waste based on its composition through the concept of biorefinery. Current Opinion in Green and Sustainable Chemistry. https://doi.org/10.1016/j.cogsc.2018.06.011

    Article  Google Scholar 

  • Chatterjee, B., & Mazumder, D. (2019). Role of stage-separation in the ubiquitous development of anaerobic digestion of organic fraction of municipal solid waste: A critical review. Renewable and Sustainable Energy Reviews, 104, 439–469. https://doi.org/10.1016/j.rser.2019.01.026

    Article  CAS  Google Scholar 

  • Chen, P., Yang, R., Pei, Y., Yang, Y., Cheng, J., He, D., Huang, Q., Zhong, H., & Jin, F. (2022). Hydrothermal synthesis of similar mineral-sourced humic acid from food waste and the role of protein. Science of the Total Environment, 828, 154440. https://doi.org/10.1016/j.scitotenv.2022.154440

    Article  CAS  Google Scholar 

  • Cheng, F., & Brewer, C. (2021). Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis+ fermentation and anaerobic digestion. Renewable and Sustainable Energy Reviews, 146, 111167. https://doi.org/10.1016/j.rser.2021.111167

    Article  CAS  Google Scholar 

  • Cho, K., Jeong, Y., Seo, K. W., Lee, S., Smith, A. L., Shin, S. G., Cho, S.-K., & Park, C. (2018). Effects of changes in temperature on treatment performance and energy recovery at mainstream anaerobic ceramic membrane bioreactor for food waste recycling wastewater treatment. Bioresource Technology, 256, 137–144. https://doi.org/10.1016/j.biortech.2018.02.015

  • Chong, C. C., Cheng, Y. W., Ishak, S., Lam, M. K., Lim, J. W., Tan, I. S., Show, P. L., & Lee, K. T. (2022). Anaerobic digestate as a low-cost nutrient source for sustainable microalgae cultivation: A way forward through waste valorization approach. Science of the Total Environment, 803, 150070. https://doi.org/10.1016/j.scitotenv.2021.150070

    Article  CAS  Google Scholar 

  • Chuenchart, W., Logan, M., Leelayouthayotin, C., & Visvanathan, C. (2020). Enhancement of food waste thermophilic anaerobic digestion through synergistic effect with chicken manure. Biomass and Bioenergy, 136, 105541. https://doi.org/10.1016/j.biombioe.2020.105541

  • Cucina, M., Pezzolla, D., Tacconi, C., & Gigliotti, G. (2021). Anaerobic co-digestion of a lignocellulosic residue with different organic wastes: Relationship between biomethane yield, soluble organic matter and process stability. Biomass and Bioenergy, 153, 106209. https://doi.org/10.1016/j.biombioe.2021.106209

    Article  CAS  Google Scholar 

  • Czatzkowska, M., Harnisz, M., Korzeniewska, E., & Koniuszewska, I. (2020). Inhibitors of the methane fermentation process with particular emphasis on the microbiological aspect: A review. Energy Science & Engineering, 8, 1880–1897. https://doi.org/10.1002/ese3.609

    Article  CAS  Google Scholar 

  • Dalke, R., Demro, D., Khalid, Y., Wu, H., & Urgun-Demirtas, M. (2021). Current status of anaerobic digestion of food waste in the United States. Renewable and Sustainable Energy Reviews, 151, 111554. https://doi.org/10.1016/j.rser.2021.111554

    Article  Google Scholar 

  • De Clercq, D., Wen, Z., Gottfried, O., Schmidt, F., & Fei, F. (2017). A review of global strategies promoting the conversion of food waste to bioenergy via anaerobic digestion. Renewable and Sustainable Energy Reviews, 79, 204–221. https://doi.org/10.1016/j.rser.2017.05.047

    Article  Google Scholar 

  • Deena, S. R., Vickram, A. S., Manikandan, S., Subbaiya, R., Karmegam, N., Ravindran, B., Chang, S. W., & Awasthi, M. K. (2022). Enhanced biogas production from food waste and activated sludge using advanced techniques—A review. Bioresource Technology, 355, 127234. https://doi.org/10.1016/j.biortech.2022.127234

    Article  CAS  Google Scholar 

  • Dennehy, C., Lawlor, P. G., Gardiner, G. E., Jiang, Y., Cormican, P., McCabe, M. S., & Zhan, X. (2017). Process stability and microbial community composition in pig manure and food waste anaerobic co-digesters operated at low HRTs. Frontiers of Environmental Science & Engineering, 11, 4. https://doi.org/10.1007/s11783-017-0923-9

    Article  CAS  Google Scholar 

  • Di Vaio, A., Hasan, S., Palladino, R., & Hassan, R. (2023). The transition towards circular economy and waste within accounting and accountability models: A systematic literature review and conceptual framework. Environment, Development and Sustainability, 25, 734–810. https://doi.org/10.1007/s10668-021-02078-5

    Article  Google Scholar 

  • Doaemo, W., Dhiman, S., Borovskis, A., Zhang, W., Bhat, S., Jaipuria, S., & Betasolo, M. (2021). Assessment of municipal solid waste management system in Lae City, Papua New Guinea in the context of sustainable development. Environment, Development and Sustainability, 23, 18509–18539. https://doi.org/10.1007/s10668-021-01465-2

    Article  Google Scholar 

  • dos Muchangos, L. S., Tokai, A., & Hanashima, A. (2017). Greenhouse gas emissions and cost assessments of municipal solid waste treatment and final disposal in Maputo City. Environment, Development and Sustainability, 21, 145–163. https://doi.org/10.1007/s10668-017-0027-5

    Article  Google Scholar 

  • D’Silva, T. C., Isha, A., Chandra, R., Vijay, V. K., Subbarao, P. M. V., Kumar, R., Chaudhary, V. P., Singh, H., Khan, A. A., & Tyagi, V. K. (2021). Enhancing methane production in anaerobic digestion through hydrogen assisted pathways–A state-of-the-art review. Renewable and Sustainable Energy Reviews, 151, 111536.

    Article  Google Scholar 

  • Durmanov, A., Saidaxmedova, N., Mamatkulov, M., Rakhimova, K., Askarov, N., Khamrayeva, S., Mukhtorov, A., Khodjimukhamedova, S., Madumarov, T., & Kurbanova, K. (2023). Sustainable growth of greenhouses: Investigating key enablers and impacts. Emerging Science Journal, 7, 1674–1690.

    Article  Google Scholar 

  • Eftekhari, M. S. (2022). Impacts of climate change on agriculture and horticulture. In S. A. Bandh (Ed.), Climate change: The social and scientific construct (pp. 117–131). Springer International Publishing. https://doi.org/10.1007/978-3-030-86290-9_8

    Chapter  Google Scholar 

  • El-Mashad, H. M., & Zhang, R. (2010). Biogas production from co-digestion of dairy manure and food waste. Bioresource Technology, 101(11), 4021–4028. https://doi.org/10.1016/j.biortech.2010.01.027

  • Ellacuriaga, M., Cascallana, J. G., González, R., & Gómez, X. (2021). High-solid anaerobic digestion: Reviewing strategies for increasing reactor performance. Environments, 8, 80. https://doi.org/10.3390/environments8080080

    Article  Google Scholar 

  • Elliott, A., & Mahmood, T. (2007). Pretreatment technologies for advancing anaerobic digestion of pulp and paper biotreatment residues. Water Research, 41, 4273–4286.

    Article  CAS  Google Scholar 

  • FAO (2011). Global food losses and food waste. http://www.fao.org/docrep/014/mb060e/mb060e00.pdf Accessed on 01 Jun 2023.

  • Farahdiba, A. U., Warmadewanthi, I. D. A. A., Fransiscus, Y., Rosyidah, E., Hermana, J., & Yuniarto, A. (2023). The present and proposed sustainable food waste treatment technology in Indonesia: A review. Environmental Technology & Innovation, 32, 103256. https://doi.org/10.1016/j.eti.2023.103256

    Article  CAS  Google Scholar 

  • Farghali, M., Osman, A. I., Umetsu, K., & Rooney, D. W. (2022). Integration of biogas systems into a carbon zero and hydrogen economy: A review. Environmental Chemistry Letters, 20, 2853–2927.

    Article  CAS  Google Scholar 

  • Folino, A., Karageorgiou, A., Calabrò, P. S., & Komilis, D. (2020). Biodegradation of wasted bioplastics in natural and industrial environments: A review. Sustainability, 12, 6030. https://doi.org/10.3390/su12156030

    Article  CAS  Google Scholar 

  • Franca, L. S., & Bassin, J. P. (2020). The role of dry anaerobic digestion in the treatment of the organic fraction of municipal solid waste: A systematic review. Biomass and Bioenergy, 143, 105866. https://doi.org/10.1016/j.biombioe.2020.105866

    Article  CAS  Google Scholar 

  • Georganas, A., Giamouri, E., Pappas, A. C., Papadomichelakis, G., Fortatos, S., Manios, T., Lasaridi, K., Fegeros, K., Tsiplakou, E., & Zervas, G. (2022). Redefining the future of catering waste application in animal diets – A review on the minimization of potential hazards in catering waste prior to application in animal diets. Animal Feed Science and Technology, 289, 115334. https://doi.org/10.1016/j.anifeedsci.2022.115334

    Article  CAS  Google Scholar 

  • González, R., Hernández, J. E., Gómez, X., Smith, R., Arias, J. G., Martínez, E. J., & Blanco, D. (2020). Performance evaluation of a small-scale digester for achieving decentralised management of waste. Waste Management, 118, 99–109. https://doi.org/10.1016/j.wasman.2020.08.020

    Article  CAS  Google Scholar 

  • Grinberga-Zalite, G., & Zvirbule, A. (2022). Analysis of waste minimization challenges to European food production enterprises. Emerging Science Journal, 6, 530–543.

    Article  Google Scholar 

  • Guerrero Toledo FdM. (2019). Dinámica microbiana de biodigestores enriquecidos con propionato Universidad Autónoma Chapingo].

  • Hagos, K., Zong, J., Li, D., Liu, C., & Lu, X. (2017). Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renewable and Sustainable Energy Reviews, 76, 1485–1496. https://doi.org/10.1016/j.rser.2016.11.184

    Article  CAS  Google Scholar 

  • Hanum, F., Yuan, L. C., Kamahara, H., Aziz, H. A., Atsuta, Y., Yamada, T., & Daimon, H. (2019). Treatment of sewage sludge using anaerobic digestion in Malaysia: Current state and challenges. Frontiers in Energy Research, 7, 19. https://doi.org/10.3389/fenrg.2019.00019

    Article  Google Scholar 

  • Harirchi, S., Wainaina, S., Sar, T., Nojoumi, S. A., Parchami, M., Parchami, M., Varjani, S., Khanal, S. K., Wong, J., & Awasthi, M. K. (2022). Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): A review. Bioengineered, 13, 6521–6557. https://doi.org/10.1080/21655979.2022.2035986

    Article  CAS  Google Scholar 

  • Hilmi, N. A. M., Zakarya, I. A., Gunny, A. A. N., Izhar, T. N. T., Zaaba, S. K., Samah, M. F., Daud, Z. A. A. M., & Beson, M. R. C. (2023). Co-digestion of food waste with cow dung by anaerobic digestion for biogas production. IOP Conference Series: Earth and Environmental Science, 1135, 012034. https://doi.org/10.1088/1755-1315/1135/1/012034

  • Hoang, A. T., Varbanov, P. S., Nižetić, S., Sirohi, R., Pandey, A., Luque, R., Ng, K. H., & Pham, V. V. (2022). Perspective review on Municipal Solid Waste-to-energy route: Characteristics, management strategy, and role in circular economy. Journal of Cleaner Production, 359, 131897. https://doi.org/10.1016/j.jclepro.2022.131897

    Article  Google Scholar 

  • Iqbal, A., Liu, X., & Chen, G.-H. (2020). Municipal solid waste: Review of best practices in application of life cycle assessment and sustainable management techniques. Science of the Total Environment, 729, 138622. https://doi.org/10.1016/j.scitotenv.2020.138622

    Article  CAS  Google Scholar 

  • Izumi, K., Okishio, Y.-k, Nagao, N., Niwa, C., Yamamoto, S., & Toda, T. (2010). Effects of particle size on anaerobic digestion of food waste. International Biodeterioration & Biodegradation, 64, 601–608. https://doi.org/10.1016/j.ibiod.2010.06.013

    Article  CAS  Google Scholar 

  • Jadeja, N. B., & Ganorkar, R. (2022). Mathematical modelling for understanding and improving the anaerobic digestion process efficiency. In M. K. Meghvansi & A. K. Goel (Eds.), Anaerobic Biodigesters for human waste treatment (pp. 39–56). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-4921-0_3

    Chapter  Google Scholar 

  • Jiang, Y., Dennehy, C., Lawlor, P., Hu, Z., McCabe, M., Cormican, P., Zhan, X., & Gardiner, G. (2018). Inhibition of volatile fatty acids on methane production kinetics during dry co-digestion of food waste and pig manure. Waste Management, 79, 302–311. https://doi.org/10.1016/j.wasman.2018.07.049

    Article  CAS  Google Scholar 

  • Jung, H., Kim, D., Choi, H., & Lee, C. (2022). A review of technologies for in-situ sulfide control in anaerobic digestion. Renewable and Sustainable Energy Reviews, 157, 112068. https://doi.org/10.1016/j.rser.2021.112068

    Article  CAS  Google Scholar 

  • Karidio Daouda Idrissa, O.-K., Tsuanyo, D., Kouakou, R. A., Konaté, Y., Sawadogo, B., & Yao, K. B. (2023). Analysis of the criteria for improving biogas production: Focus on anaerobic digestion. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-03788-8

    Article  Google Scholar 

  • Kautish, P., Sharma, R., Mangla, S. K., Jabeen, F., & Awan, U. (2021). Understanding choice behavior towards plastic consumption: An emerging market investigation. Resources, Conservation and Recycling, 174, 105828. https://doi.org/10.1016/j.resconrec.2021.105828

    Article  Google Scholar 

  • Khan, M. U., & Ahring, B. K. (2019). Lignin degradation under anaerobic digestion: Influence of lignin modifications-A review. Biomass and Bioenergy, 128, 105325. https://doi.org/10.1016/j.biombioe.2019.105325

    Article  CAS  Google Scholar 

  • Khelifa Zouaghi, L. Y. S., Djelal, H., & Salem, Z. (2020). Anaerobic co-digestion of three organic wastes under mesophilic conditions: Lab-scale and pilot-scale studies. Environment, Development and Sustainability, 23, 9014–9028. https://doi.org/10.1007/s10668-020-01009-0

    Article  Google Scholar 

  • Komilis, D., Barrena, R., Grando, R. L., Vogiatzi, V., Sánchez, A., & Font, X. (2017). A state of the art literature review on anaerobic digestion of food waste: Influential operating parameters on methane yield. Reviews in Environmental Science and Bio/technology, 16, 347–360. https://doi.org/10.1007/s11157-017-9428-z

    Article  Google Scholar 

  • Kouas, M., Torrijos, M., Sousbie, P., Steyer, J.-P., Sayadi, S., & Harmand, J. (2017). Robust assessment of both biochemical methane potential and degradation kinetics of solid residues in successive batches. Waste Management, 70, 59–70. https://doi.org/10.1016/j.wasman.2017.09.001

    Article  CAS  Google Scholar 

  • Kulwant, M., Patel, D., Shirin, S., Sharma, S. N., & Yadav, A. K. (2023). Future frameworks for fluoride and algorithms for environmental system. In A. K. Yadav, S. Shirin, & V. P. Singh (Eds.), Advanced treatment technologies for fluoride removal in water: Water purification (pp. 343–364). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-38845-3_19

    Chapter  Google Scholar 

  • Kumar, A., & Samadder, S. R. (2020). Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review. Energy, 197, 117253. https://doi.org/10.1016/j.energy.2020.117253

    Article  CAS  Google Scholar 

  • Kumar, A., Chava, R., Gupta, S., Shirin, S., Jamal, A., & Yadav, A. K. (2023). Environmental and health effects of fluoride contamination and treatment of wastewater using various technologies. In A. K. Yadav, S. Shirin, & V. P. Singh (Eds.), Advanced treatment technologies for fluoride removal in water: water purification (pp. 323–341). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-38845-3_18

    Chapter  Google Scholar 

  • Kunnoth, B., & Rao, P. (2021). Anaerobic digestion of dairy wastewater: Effect of different parameters and co-digestion options—a review. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01247-2

    Article  Google Scholar 

  • Laiq Ur Rehman, M., Iqbal, A., Chang, C.-C., Li, W., & Ju, M. (2019). Anaerobic digestion. Water Environment Research, 91, 1253–1271. https://doi.org/10.1002/wer.1219

    Article  CAS  Google Scholar 

  • Lamolinara, B., Pérez-Martínez, A., Guardado-Yordi, E., Fiallos, C. G., Diéguez-Santana, K., & Ruiz-Mercado, G. J. (2022). Anaerobic digestate management, environmental impacts, and techno-economic challenges. Waste Management, 140, 14–30.

    Article  CAS  Google Scholar 

  • Lehn, F., Goossens, Y., & Schmidt, T. (2023). Economic and environmental assessment of food waste reduction measures—Trialing a time-temperature indicator on salmon in HelloFresh meal boxes. Journal of Cleaner Production, 392, 136183. https://doi.org/10.1016/j.jclepro.2023.136183

    Article  Google Scholar 

  • Li, S., & Chen, G. (2019). Contemporary strategies for enhancing nitrogen retention and mitigating nitrous oxide emission in agricultural soils: Present and future. Environment, Development and Sustainability, 22, 2703–2741. https://doi.org/10.1007/s10668-019-00327-2

    Article  Google Scholar 

  • Li, X., Li, L., Zheng, M., Fu, G., & Lar, J. S. (2009). Anaerobic co-digestion of cattle manure with corn stover pretreated by sodium hydroxide for efficient biogas production. Energy & Fuels, 23(9), 4635–4639. https://doi.org/10.1021/ef900384p

  • Li, Y., Chen, Y., & Wu, J. (2019a). Enhancement of methane production in anaerobic digestion process: A review. Applied Energy, 240, 120–137. https://doi.org/10.1016/j.apenergy.2019.01.243

    Article  CAS  Google Scholar 

  • Li, Y., Jin, Y., Borrion, A., & Li, H. (2019b). Current status of food waste generation and management in China. Bioresource Technology, 273, 654–665. https://doi.org/10.1016/j.biortech.2018.10.083

    Article  CAS  Google Scholar 

  • Li, Z.-Y., Inoue, D., & Ike, M. (2023). Mitigating ammonia-inhibition in anaerobic digestion by bioaugmentation: A review. Journal of Water Process Engineering, 52, 103506. https://doi.org/10.1016/j.jwpe.2023.103506

    Article  Google Scholar 

  • Liang, T., Elmaadawy, K., Liu, B., Hu, J., Hou, H., & Yang, J. (2021). Anaerobic fermentation of waste activated sludge for volatile fatty acid production: Recent updates of pretreatment methods and the potential effect of humic and nutrients substances. Process Safety and Environmental Protection, 145, 321–339. https://doi.org/10.1016/j.psep.2020.08.010

    Article  CAS  Google Scholar 

  • Lin, B., & Guan, C. (2021). Determinants of household food waste reduction intention in China: The role of perceived government control. Journal of Environmental Management, 299, 113577. https://doi.org/10.1016/j.jenvman.2021.113577

    Article  Google Scholar 

  • Lv, N., Cai, G., Pan, X., Li, Y., Wang, R., Li, J., Li, C., & Zhu, G. (2022). pH and hydraulic retention time regulation for anaerobic fermentation: Focus on volatile fatty acids production/distribution, microbial community succession and interactive correlation. Bioresource Technology, 347, 126310.

    Article  CAS  Google Scholar 

  • Lytras, G., Lytras, C., Mathioudakis, D., Papadopoulou, K., & Lyberatos, G. (2021). Food waste valorization based on anaerobic digestion. Waste and Biomass Valorization, 12, 1677–1697. https://doi.org/10.1007/s12649-020-01108-z

    Article  CAS  Google Scholar 

  • Madigou, C., Lê Cao, K.-A., Bureau, C., Mazéas, L., Déjean, S., & Chapleur, O. (2019). Ecological consequences of abrupt temperature changes in anaerobic digesters. Chemical Engineering Journal, 361, 266–277. https://doi.org/10.1016/j.cej.2018.12.003

    Article  CAS  Google Scholar 

  • Mahmudul, H., Rasul, M., Akbar, D., Narayanan, R., & Mofijur, M. (2022). Food waste as a source of sustainable energy: Technical, economical, environmental and regulatory feasibility analysis. Renewable and Sustainable Energy Reviews, 166, 112577. https://doi.org/10.1016/j.rser.2022.112577

    Article  Google Scholar 

  • Mak, T. M. W., Xiong, X., Tsang, D. C. W., Yu, I. K. M., & Poon, C. S. (2020). Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. Bioresource Technology, 297, 122497. https://doi.org/10.1016/j.biortech.2019.122497

    Article  CAS  Google Scholar 

  • Makanjuola, O., Arowosola, T., & Chenyu, D. (2020). The utilization of food waste: Challenges and opportunities. J. Food Chem. Nanotechnol, 6, 182–188.

    Article  Google Scholar 

  • Manirethan, V., Joy, J., Varghese, R. T., & Uddandarao, P. (2022). Municipal solid waste for sustainable production of biofuels and value-added products from biorefinery. In Y. K. Nandabalan, V. K. Garg, N. K. Labhsetwar, & A. Singh (Eds.), Zero waste biorefinery (pp. 425–447). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-8682-5_15

    Chapter  Google Scholar 

  • Martí-Herrero, J., Soria-Castellón, G., Diaz-de-Basurto, A., Alvarez, R., & Chemisana, D. (2019). Biogas from a full scale digester operated in psychrophilic conditions and fed only with fruit and vegetable waste. Renewable Energy, 133, 676–684. https://doi.org/10.1016/j.renene.2018.10.030

  • Mathioudakis, D., Lytras, G. M., Fotiou, D., Lytras, C., Papadopoulou, K., & Lyberatos, G. (2018). Valorization of a Food Residue Biomass product in a two-stage anaerobic digestion system for the production of hythane. In 6th International Conference on Sustainable Solid Waste Management.

  • Menzel, T., Neubauer, P., & Junne, S. (2020). Role of microbial hydrolysis in anaerobic digestion. Energies, 13, 5555. https://doi.org/10.3390/en13215555

    Article  CAS  Google Scholar 

  • Michalopoulos, I., Lytras, G. M., Mathioudakis, D., Lytras, C., Goumenos, A., Zacharopoulos, I., Papadopoulou, K., & Lyberatos, G. (2020). Hydrogen and methane production from food residue biomass product (FORBI). Waste and Biomass Valorization, 11, 1647–1655. https://doi.org/10.1007/s12649-018-00550-4

  • Mirmohamadsadeghi, S., Karimi, K., Tabatabaei, M., & Aghbashlo, M. (2019). Biogas production from food wastes: A review on recent developments and future perspectives. Bioresource Technology Reports, 7, 100202. https://doi.org/10.1016/j.biteb.2019.100202

    Article  Google Scholar 

  • Moeller L, Zehnsdorf A, Pokorná D, Zábranská J. (2018). Chapter one—Foam formation in anaerobic digesters. In Y. Li & X. Ge (Eds.), Advances in bioenergy (Vol. 3, pp. 1–42). Elsevier. https://doi.org/10.1016/bs.aibe.2018.02.001

  • Morales-Polo, C., Cledera-Castro, M. D. M., & Moratilla Soria, B. Y. (2018). Reviewing the anaerobic digestion of food waste: From waste generation and anaerobic process to its perspectives. Applied Sciences, 8, 1804. https://doi.org/10.3390/app8101804

    Article  Google Scholar 

  • Mostakim, K., Arefin, M. A., Islam, M. T., Shifullah, K. M., & Islam, M. A. (2021). Harnessing energy from the waste produced in Bangladesh: Evaluating potential technologies. Heliyon, 7, e08221. https://doi.org/10.1016/j.heliyon.2021.e08221

    Article  CAS  Google Scholar 

  • Muralikrishna, I. V., & Manickam, V. (2017). Chapter twelve—Wastewater treatment technologies. In I. V. Muralikrishna & V. Manickam (Eds.), Environmental management (pp. 249–293). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-811989-1.00012-9

    Chapter  Google Scholar 

  • Musa, M. A., Idrus, S., Hasfalina, C. M., & Daud, N. N. N. (2018). Effect of organic loading rate on anaerobic digestion performance of mesophilic (UASB) reactor using cattle slaughterhouse wastewater as substrate. International Journal of Environmental Research and Public Health, 15, 2220. https://doi.org/10.3390/ijerph15102220

    Article  CAS  Google Scholar 

  • Narala, V. R., Zagorska, J., Sarenkova, I., Ciprovica, I., & Majore, K. (2022). Acid whey valorization for biotechnological lactobionic acid bio-production. Journal of Human, Earth, and Future, 3, 46–55.

    Article  Google Scholar 

  • Nauen, C. E. (2008). Ten years of international scientific cooperation in fisheries, aquaculture and coastal zones: Some preliminary lessons. Environment, Development and Sustainability, 10, 605–622. https://doi.org/10.1007/s10668-008-9153-4

    Article  Google Scholar 

  • Nevzorova, T., & Kutcherov, V. (2019). Barriers to the wider implementation of biogas as a source of energy: A state-of-the-art review. Energy Strategy Reviews, 26, 100414.

    Article  Google Scholar 

  • Nguyen, D., Wu, Z., Shrestha, S., Lee, P.-H., Raskin, L., & Khanal, S. K. (2019). Intermittent micro-aeration: New strategy to control volatile fatty acid accumulation in high organic loading anaerobic digestion. Water Research, 166, 115080. https://doi.org/10.1016/j.watres.2019.115080

    Article  CAS  Google Scholar 

  • Nguyen, V. K., Chaudhary, D. K., Dahal, R. H., Trinh, N. H., Kim, J., Chang, S. W., Hong, Y., La, D. D., Nguyen, X. C., & Ngo, H. H. (2021). Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel, 285, 119105. https://doi.org/10.1016/j.fuel.2020.119105

    Article  CAS  Google Scholar 

  • Nizami, A. S., Rehan, M., Waqas, M., Naqvi, M., Ouda, O. K. M., Shahzad, K., Miandad, R., Khan, M. Z., Syamsiro, M., Ismail, I. M. I., & Pant, D. (2017). Waste biorefineries: Enabling circular economies in developing countries. Bioresource Technology, 241, 1101–1117. https://doi.org/10.1016/j.biortech.2017.05.097

    Article  CAS  Google Scholar 

  • Onwosi, C. O., Eke, I. E., Igbokwe, V. C., Odimba, J. N., Ndukwe, J. K., Chukwu, K. O., Aliyu, G. O., & Nwagu, T. N. (2019). Towards effective management of digester dysfunction during anaerobic treatment processes. Renewable and Sustainable Energy Reviews, 116, 109424. https://doi.org/10.1016/j.rser.2019.109424

    Article  CAS  Google Scholar 

  • Osorio, L. L. D. R., Flórez-López, E., & Grande-Tovar, C. D. (2021). The potential of selected agri-food loss and waste to contribute to a circular economy: Applications in the food, cosmetic and pharmaceutical industries. Molecules, 26, 515. https://doi.org/10.3390/molecules26020515

    Article  CAS  Google Scholar 

  • Paritosh, K., Kushwaha, S. K., Yadav, M., Pareek, N., Chawade, A., & Vivekanand, V. (2017). Food waste to energy: An overview of sustainable approaches for food waste management and nutrient recycling. BioMed Research International, 2017, 2370927. https://doi.org/10.1155/2017/2370927

    Article  CAS  Google Scholar 

  • Park, J., Lee, B., Shin, W., Jo, S., & Jun, H. (2018). Psychrophilic methanogenesis of food waste in a bio-electrochemical anaerobic digester with rotating impeller electrode. Journal of Cleaner Production, 188, 556–567. https://doi.org/10.1016/j.jclepro.2018.03.289

  • Park, J.-G., Lee, B., Kwon, H.-J., Park, H.-R., & Jun, H.-B. (2019). Effects of a novel auxiliary bio-electrochemical reactor on methane production from highly concentrated food waste in an anaerobic digestion reactor. Chemosphere, 220, 403–411. https://doi.org/10.1016/j.chemosphere.2018.12.169

  • Patel, S. K. S., Das, D., Kim, S. C., Cho, B.-K., Kalia, V. C., & Lee, J.-K. (2021). Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products. Renewable and Sustainable Energy Reviews, 150, 111491. https://doi.org/10.1016/j.rser.2021.111491

    Article  CAS  Google Scholar 

  • Patel, D., Pamidimukkala, P., Chakraborty, D., & Yadav, A. (2022). Bharuch District, Gujarat, India: Factor analysis and geographical distribution of water quality characteristics. Environmental Nanotechnology, Monitoring & Management, 18, 100732. https://doi.org/10.1016/j.enmm.2022.100732

    Article  CAS  Google Scholar 

  • Patel, D., Kulwant, M., Shirin, S., Varshney, R., Pandey, G., & Yadav, A. K. (2023). Fluoride removal from aqueous solution using iron-based materials: Preparation, characterization, and applications. In A. K. Yadav, S. Shirin, & V. P. Singh (Eds.), Advanced treatment technologies for fluoride removal in water: Water purification (pp. 71–92). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-38845-3_4

    Chapter  Google Scholar 

  • Pramanik, S. K. (2022). Anaerobic co-digestion of municipal organic solid waste: Achievements and perspective. Bioresource Technology Reports, 20, 101284. https://doi.org/10.1016/j.biteb.2022.101284

    Article  CAS  Google Scholar 

  • Putatunda, C., Behl, M., Solanki, P., Sharma, S., Bhatia, S. K., Walia, A., & Bhatia, R. K. (2022). Current challenges and future technology in photofermentation-driven biohydrogen production by utilizing algae and bacteria. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.10

    Article  Google Scholar 

  • Rahman, M. A., Shahazi, R., Nova, S. N. B., Uddin, M. R., Hossain, M. S., & Yousuf, A. (2021). Biogas production from anaerobic co-digestion using kitchen waste and poultry manure as substrate—Part 1: Substrate ratio and effect of temperature. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01604-9

    Article  Google Scholar 

  • Rajagopal, R., Choudhury, M. R., Anwar, N., Goyette, B., & Rahaman, M. S. (2019). Influence of pre-hydrolysis on sewage treatment in an up-flow anaerobic sludge BLANKET (UASB) reactor: A review. Water, 11, 372. https://doi.org/10.3390/w11020372

    Article  CAS  Google Scholar 

  • Rawoof, S. A. A., Kumar, P. S., Vo, D.-V.N., Devaraj, T., & Subramanian, S. (2021a). Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review. Renewable and Sustainable Energy Reviews, 152, 111700. https://doi.org/10.1016/j.rser.2021.111700

    Article  CAS  Google Scholar 

  • Rawoof, S. A. A., Kumar, P. S., Vo, D.-V.N., & Subramanian, S. (2021b). Sequential production of hydrogen and methane by anaerobic digestion of organic wastes: A review. Environmental Chemistry Letters, 19, 1043–1063.

    Article  CAS  Google Scholar 

  • Ren, Y., Yu, M., Wu, C., Wang, Q., Gao, M., Huang, Q., & Liu, Y. (2018). A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresource Technology, 247, 1069–1076. https://doi.org/10.1016/j.biortech.2017.09.109

    Article  CAS  Google Scholar 

  • Richard, E. N., Hilonga, A., Machunda, R. L., & Njau, K. N. (2019). A review on strategies to optimize metabolic stages of anaerobic digestion of municipal solid wastes towards enhanced resources recovery. Sustainable Environment Research, 29, 36. https://doi.org/10.1186/s42834-019-0037-0

    Article  CAS  Google Scholar 

  • Romero-Güiza, M., Vila, J., Mata-Alvarez, J., Chimenos, J., & Astals, S. (2016). The role of additives on anaerobic digestion: A review. Renewable and Sustainable Energy Reviews, 58, 1486–1499.

    Article  Google Scholar 

  • Roopnarain, A., Rama, H., Ndaba, B., Bello-Akinosho, M., Bamuza-Pemu, E., & Adeleke, R. (2021). Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization. Renewable and Sustainable Energy Reviews, 152, 111717.

    Article  CAS  Google Scholar 

  • Ryue, J., Lin, L., Liu, Y., Lu, W., McCartney, D., & Dhar, B. R. (2019). Comparative effects of GAC addition on methane productivity and microbial community in mesophilic and thermophilic anaerobic digestion of food waste. Biochemical Engineering Journal, 146, 79–87. https://doi.org/10.1016/j.bej.2019.03.010

    Article  CAS  Google Scholar 

  • Sáenz-Hidalgo HK, Guevara-Aguilar A, Buenrostro-Figueroa JJ, Baeza-Jiménez R, Flores-Gallegos AC, Alvarado-González M. (2021). Biotechnological Valorization of Whey: A By-Product from the Dairy Industry. In Bioprocessing of Agri-Food Residues for Production of Bioproducts (pp. 159–200). Apple Academic Press.

  • Sarkar, I. J. R., Laishi, S., Kabesha, M. C., Ismail, K., & Kumar, S. (2023). Conversion of food waste into valuable products. In D. B. Pal & A. K. Tiwari (Eds.), Sustainable valorization of agriculture & food waste biomass: Application in bioenergy & useful chemicals (pp. 181–201). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-0526-3_8

    Chapter  Google Scholar 

  • Sarker, S., Lamb, J. J., Hjelme, D. R., & Lien, K. M. (2019). A review of the role of critical parameters in the design and operation of biogas production plants. Applied Sciences, 9, 1915. https://doi.org/10.3390/app9091915

    Article  CAS  Google Scholar 

  • Sarrion, A., Medina-Martos, E., Iribarren, D., Diaz, E., Mohedano, A. F., & Dufour, J. (2023). Life cycle assessment of a novel strategy based on hydrothermal carbonization for nutrient and energy recovery from food waste. Science of The Total Environment, 878, 163104. https://doi.org/10.1016/j.scitotenv.2023.163104

  • Sayara, T., & Sánchez, A. (2019). A review on anaerobic digestion of lignocellulosic wastes: Pretreatments and operational conditions. Applied Sciences, 9, 4655.

    Article  CAS  Google Scholar 

  • Scarlat, N., Fahl, F., & Dallemand, J.-F. (2019). Status and opportunities for energy recovery from municipal solid waste in Europe. Waste and Biomass Valorization, 10, 2425–2444. https://doi.org/10.1007/s12649-018-0297-7

    Article  Google Scholar 

  • Shahbaz, M., Ammar, M., Zou, D., Korai, R. M., & Li, X. (2019). An Insight into the anaerobic co-digestion of municipal solid waste and food waste: Influence of co-substrate mixture ratio and substrate to inoculum ratio on biogas production. Applied Biochemistry and Biotechnology, 187, 1356–1370. https://doi.org/10.1007/s12010-018-2891-3

    Article  CAS  Google Scholar 

  • Shanmugam, S., Mathimani, T., Rajendran, K., Sekar, M., Rene, E. R., Chi, N. T. L., Ngo, H. H., & Pugazhendhi, A. (2023). Perspective on the strategies and challenges in hydrogen production from food and food processing wastes. Fuel, 338, 127376. https://doi.org/10.1016/j.fuel.2022.127376

    Article  CAS  Google Scholar 

  • Sheahan, M., & Barrett, C. B. (2017). Review: Food loss and waste in Sub-Saharan Africa. Food Policy, 70, 1–12. https://doi.org/10.1016/j.foodpol.2017.03.012

    Article  Google Scholar 

  • Shirin, S., & Yadav, A. K. (2014). Physico-chemical analysis of municipal wastewater discharge in Ganga river, Haridwar district of Uttarakhand, India. Current World Environment, 9, 536–543. https://doi.org/10.12944/CWE.9.2.39

    Article  Google Scholar 

  • Shirin, S., Jamal, A., Emmanouil, C., Singh, V. P., & Yadav, A. K. (2023). Assessment and characterization of waste material used as backfilling in an abandoned mine. International Journal of Coal Preparation and Utilization, 43, 1402–1410. https://doi.org/10.1080/19392699.2022.2118259

    Article  CAS  Google Scholar 

  • Siciliano, A., Limonti, C., & Curcio, G. (2021). Performance evaluation of pressurized anaerobic digestion (PDA) of raw compost leachate. Fermentation, 8, 15.

    Article  Google Scholar 

  • Sillero, L., Solera, R., & Pérez, M. (2023). Thermophilic-mesophilic temperature phase anaerobic co-digestion of sewage sludge, wine vinasse and poultry manure: Effect of hydraulic retention time on mesophilic-methanogenic stage. Chemical Engineering Journal, 451, 138478. https://doi.org/10.1016/j.jclepro.2022.135237

    Article  CAS  Google Scholar 

  • Silva, F. M., Mahler, C. F., Oliveira, L. B., & Bassin, J. P. (2018). Hydrogen and methane production in a two-stage anaerobic digestion system by co-digestion of food waste, sewage sludge and glycerol. Waste Management, 76, 339–349. https://doi.org/10.1016/j.wasman.2018.02.039

    Article  CAS  Google Scholar 

  • Soffian, M. S., Halim, F. Z. A., Aziz, F., Rahman, M. A., Amin, M. A. M., & Chee, D. N. A. (2022). Carbon-based material derived from biomass waste for wastewater treatment. Environmental Advances. https://doi.org/10.1016/j.envadv.2022.100259

    Article  Google Scholar 

  • Sun, Y., Wang, D., Qiao, W., Wang, W., & Zhu, T. (2013). Anaerobic co-digestion of municipal biomass wastes and waste activated sludge: Dynamic model and material balances. Journal of Environmental Sciences, 25, 2112–2122. https://doi.org/10.1016/S1001-0742(12)60236-8

  • Toja Ortega, S., Pronk, M., & de Kreuk, M. K. (2021). Anaerobic hydrolysis of complex substrates in full-scale aerobic granular sludge: Enzymatic activity determined in different sludge fractions. Applied Microbiology and Biotechnology, 105, 6073–6086. https://doi.org/10.3390/pr9081472

    Article  CAS  Google Scholar 

  • Tong, H., Shen, Y., Zhang, J., Wang, C.-H., Ge, T. S., & Tong, Y. W. (2018). A comparative life cycle assessment on four waste-to-energy scenarios for food waste generated in eateries. Applied Energy, 225, 1143–1157. https://doi.org/10.1016/j.apenergy.2018.05.062

    Article  CAS  Google Scholar 

  • Tsui, T.-H., & Wong, J. W. C. (2019). A critical review: Emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management. Waste Disposal & Sustainable Energy, 1, 151–167. https://doi.org/10.1007/s42768-019-00013-z

    Article  Google Scholar 

  • Uddin, M. M., & Wright, M. M. (2023). Anaerobic digestion fundamentals, challenges, and technological advances. Physical Sciences Reviews, 8, 2819–2837. https://doi.org/10.1515/psr-2021-0068

    Article  Google Scholar 

  • Unuofin, J. O., Aladekoyi, O. J., & Odeniyi, O. A. (2021). Food wastes: Perceptions, impacts and management. In I. Haq & A. S. Kalamdhad (Eds.), Emerging treatment technologies for waste management (pp. 175–196). Springer Singapore. https://doi.org/10.1007/978-981-16-2015-7_8

    Chapter  Google Scholar 

  • Van, D. P., Fujiwara, T., Tho, B. L., Toan, P. P. S., & Minh, G. H. (2020). A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends. Environmental Engineering Research, 25, 1–17. https://doi.org/10.4491/eer.2018.334

    Article  Google Scholar 

  • Vanitha, T., Dahiya, S., Lingam, Y., & Mohan, S. V. (2022). Critical factors influence on acidogenesis towards volatile fatty acid, biohydrogen and methane production from the molasses-spent wash. Bioresource Technology, 360, 127446. https://doi.org/10.1016/j.biortech.2022.127446

    Article  CAS  Google Scholar 

  • Vats, N., Khan, A. A., & Ahmad, K. (2019). Observation of biogas production by sugarcane bagasse and food waste in different composition combinations. Energy, 185, 1100–1105. https://doi.org/10.1016/j.energy.2019.07.080

  • Vieira, S., Schneider, J., Martinez Burgos, W. J., Magalhães, A., Medeiros, A. B. P., de Carvalho, J. C., de Souza Vandenberghe, L. P., Soccol, C. R., & Sydney, E. B. (2022). Pretreatments of solid wastes for anaerobic digestion and its importance for the circular economy. In C. Baskar, S. Ramakrishna, S. Baskar, R. Sharma, A. Chinnappan, & R. Sehrawat (Eds.), Handbook of solid waste management: Sustainability through circular economy (pp. 69–94). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-4230-2_5

    Chapter  Google Scholar 

  • Vimala Ebenezer, A., Dinesh Kumar, M., Kavitha, S., Uan, D. K., & Rajesh Banu, J. (2020). Chapter 14 - State of the art of food waste management in various countries. In J. R. Banu, G. Kumar, M. Gunasekaran, & S. Kavitha (Eds.), Food waste to valuable resources (pp. 299–323). Academic Press. https://doi.org/10.1016/B978-0-12-818353-3.00014-6

    Chapter  Google Scholar 

  • Wainaina, S., Awasthi, M. K., Horváth, I. S., & Taherzadeh, M. J. (2020). Anaerobic digestion of food waste to volatile fatty acids and hydrogen at high organic loading rates in immersed membrane bioreactors. Renewable Energy, 152, 1140–1148. https://doi.org/10.1016/j.renene.2020.01.138

    Article  CAS  Google Scholar 

  • Wang, F., Pei, M., Qiu, L., Yao, Y., Zhang, C., & Qiang, H. (2019a). Performance of anaerobic digestion of chicken manure under gradually elevated organic loading rates. International Journal of Environmental Research and Public Health, 16, 2239. https://doi.org/10.3390/ijerph16122239

    Article  CAS  Google Scholar 

  • Wang, S., Ma, F., Ma, W., Wang, P., Zhao, G., & Lu, X. (2019b). Influence of temperature on biogas production efficiency and microbial community in a two-phase anaerobic digestion system. Water, 11, 133. https://doi.org/10.3390/w11010133

    Article  CAS  Google Scholar 

  • Wang, D.-l, Zhang, Q.-l, Chen, Q.-s, Qi, C.-c, Feng, Y., & Xiao, C.-c. (2020a). Temperature variation characteristics in flocculation settlement of tailings and its mechanism. International Journal of Minerals, Metallurgy and Materials, 27, 1438–1448. https://doi.org/10.1007/s12613-020-2022-3

    Article  Google Scholar 

  • Wang, S., Xu, D., Guo, Y., Tang, X., Wang, Y., Zhang, J., Ma, H., Qian, L., Li, Y., & Wang, S. (2020b). Oxidative Mechanisms and Kinetics of Organics in Supercritical Water. Supercritical Water Processing Technologies for Environment, Energy and Nanomaterial Applications. https://doi.org/10.1007/978-981-13-9326-6_3

    Article  Google Scholar 

  • Wang, F., Harindintwali, J. D., Yuan, Z., Wang, M., Wang, F., Li, S., Yin, Z., Huang, L., Fu, Y., Li, L., Chang, S. X., Zhang, L., Rinklebe, J., Yuan, Z., Zhu, Q., Xiang, L., Tsang, D. C. W., Xu, L., Jiang, X., … Chen, J. M. (2021). Technologies and perspectives for achieving carbon neutrality. The Innovation, 2, 100180. https://doi.org/10.1016/j.xinn.2021.100180

    Article  CAS  Google Scholar 

  • Wang, X.-T., Zhang, Y.-F., Wang, B., Wang, S., Xing, X., Xu, X.-J., Liu, W.-Z., Ren, N.-Q., Lee, D.-J., & Chen, C. (2022). Enhancement of methane production from waste activated sludge using hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) process—A review. Bioresource Technology, 346, 126641. https://doi.org/10.1016/j.biortech.2021.126641

    Article  CAS  Google Scholar 

  • Wen, C., Dai, Z., Cheng, F., Cheng, H., Yang, Z., Cai, Q., Zha, X., & Lu, X. (2022). Review on research achievements of blackwater anaerobic digestion for enhanced resource recovery. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-022-02734-4

    Article  Google Scholar 

  • Workie, E., Kumar, V., Bhatnagar, A., He, Y., Dai, Y., Wah Tong, Y., Peng, Y., Zhang, J., & Fu, C. (2023). Advancing the bioconversion process of food waste into methane: A systematic review. Waste Management, 156, 187–197. https://doi.org/10.1016/j.wasman.2022.11.030

    Article  CAS  Google Scholar 

  • Wu, D., Li, L., Peng, Y., Yang, P., Peng, X., Sun, Y., & Wang, X. (2021a). State indicators of anaerobic digestion: A critical review on process monitoring and diagnosis. Renewable and Sustainable Energy Reviews, 148, 111260. https://doi.org/10.1016/j.rser.2021.111260

    Article  CAS  Google Scholar 

  • Wu, D., Peng, X., Li, L., Yang, P., Peng, Y., Liu, H., & Wang, X. (2021b). Commercial biogas plants: Review on operational parameters and guide for performance optimization. Fuel, 303, 121282. https://doi.org/10.1016/j.fuel.2021.121282

    Article  CAS  Google Scholar 

  • Wu, L., Wei, W., Song, L., Woźniak-Karczewska, M., Chrzanowski, Ł, & Ni, B.-J. (2021c). Upgrading biogas produced in anaerobic digestion: Biological removal and bioconversion of CO2 in biogas. Renewable and Sustainable Energy Reviews, 150, 111448. https://doi.org/10.1016/j.rser.2021.111448

    Article  CAS  Google Scholar 

  • Xiao, H., Zhang, D., Tang, Z., Li, K., Guo, H., Niu, X., & Yi, L. (2022). Comparative environmental and economic life cycle assessment of dry and wet anaerobic digestion for treating food waste and biogas digestate. Journal of Cleaner Production, 338, 130674. https://doi.org/10.1016/j.jclepro.2022.130674

    Article  CAS  Google Scholar 

  • Xu, F., Li, Y., Ge, X., Yang, L., & Li, Y. (2018). Anaerobic digestion of food waste – Challenges and opportunities. Bioresource Technology, 247, 1047–1058. https://doi.org/10.1016/j.biortech.2017.09.020

    Article  CAS  Google Scholar 

  • Xu, N., Liu, S., Xin, F., Zhou, J., Jia, H., Xu, J., Jiang, M., & Dong, W. (2019). Biomethane production from lignocellulose: Biomass recalcitrance and its impacts on anaerobic digestion. Frontiers in Bioengineering and Biotechnology, 7, 191. https://doi.org/10.3389/fbioe.2019.00191

    Article  Google Scholar 

  • Xu, F., Okopi, S. I., Jiang, Y., Chen, Z., Meng, L., Li, Y., Sun, W., & Li, C. (2022). Multi-criteria assessment of food waste and waste paper anaerobic co-digestion: Effects of inoculation ratio, total solids content, and feedstock composition. Renewable Energy, 194, 40–50. https://doi.org/10.1016/j.renene.2022.05.078

    Article  Google Scholar 

  • Yadav, A. K., Sahoo, S. K., Mahapatra, S., Kumar, A. V., Pandey, G., Lenka, P., & Tripathi, R. M. (2014). Concentrations of uranium in drinking water and cumulative, age-dependent radiation doses in four districts of Uttar Pradesh, India. Toxicological & Environmental Chemistry, 96, 192–200. https://doi.org/10.1080/02772248.2014.934247

    Article  CAS  Google Scholar 

  • Yadav, M., Joshi, C., Paritosh, K., Thakur, J., Pareek, N., Masakapalli, S. K., & Vivekanand, V. (2022). Reprint of: Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metabolic Engineering. https://doi.org/10.1016/j.ymben.2022.02.001

    Article  Google Scholar 

  • Yasser Farouk, R., Mostafa, E., & Wang, Y. (2022). Evaluation of hydrogen and volatile fatty acids production system from food waste. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-02056-x

    Article  Google Scholar 

  • Yellezuome, D., Zhu, X., Wang, Z., & Liu, R. (2022). Mitigation of ammonia inhibition in anaerobic digestion of nitrogen-rich substrates for biogas production by ammonia stripping: A review. Renewable and Sustainable Energy Reviews, 157, 112043. https://doi.org/10.1016/j.rser.2021.112043

    Article  CAS  Google Scholar 

  • You, Z., Wei, T., & Cheng, J. J. (2014). Improving anaerobic codigestion of corn stover using sodium hydroxide pretreatment. Energy & Fuels, 28(1), 549–554. https://doi.org/10.1021/ef4016476

  • Zabranska, J., & Pokorna, D. (2018). Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens. Biotechnology Advances, 36, 707–720. https://doi.org/10.1016/j.biotechadv.2017.12.003

    Article  CAS  Google Scholar 

  • Zamri, M., Hasmady, S., Akhiar, A., Ideris, F., Shamsuddin, A., Mofijur, M., Fattah, I. R., & Mahlia, T. (2021). A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 137, 110637.

    Article  CAS  Google Scholar 

  • Zhang, X., Liu, C., Chen, Y., Zheng, G., & Chen, Y. (2022a). Source separation, transportation, pretreatment, and valorization of municipal solid waste: A critical review. Environment, Development and Sustainability, 24, 11471–11513. https://doi.org/10.1007/s10668-021-01932-w

    Article  Google Scholar 

  • Zhang, Y., Li, C., Yuan, Z., Wang, R., Angelidaki, I., & Zhu, G. (2022b). The syntrophy mechanisms, microbial population, and process optimization for volatile fatty acids metabolism in anaerobic digestion. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2022.139137

    Article  Google Scholar 

  • Zhang, H., Fu, Z., Guan, D., Zhao, J., Wang, Y., Zhang, Q., Xie, J., Sun, Y., Guo, L., & Wang, D. (2023). A comprehensive review on food waste anaerobic co-digestion: Current situation and research prospect. Process Safety and Environmental Protection, 179, 546–558. https://doi.org/10.1016/j.psep.2023.09.030

    Article  CAS  Google Scholar 

  • Zhao, M-X., & Ruan, W-Q. (2013). Biogas performance from co-digestion of Taihu algae and kitchen wastes. Energy Conversion and Management, 75, 21–24. https://doi.org/10.1016/j.enconman.2013.05.037

  • Zhao, D., Yan, B., Liu, C., Yao, B., Luo, L., Yang, Y., Liu, L., Wu, F., & Zhou, Y. (2021). Mitigation of acidogenic product inhibition and elevated mass transfer by biochar during anaerobic digestion of food waste. Bioresource Technology, 338, 125531. https://doi.org/10.1016/j.biortech.2021.125531

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank our prestigious institute and other people who are involved in this study for their direct and indirect contributions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prathap Somu or Akhilesh Kumar Yadav.

Ethics declarations

Conflict of interest

The authors do not have a conflict-of-interest statement.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabbirahmed, A.M., Somu, P., Yang, HH. et al. Challenges and strategies for waste food anaerobic digestion: insights and future directions. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04820-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04820-1

Keywords

Navigation