Skip to main content

Advertisement

Log in

Thermal Energy Storage Materials Made of Natural and Recycled Resources for CSP in West Africa

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A sustainable development of Concentrating Solar Power plants can be really undertaken by using locally made components and low cost eco-materials. This study is focused on the use of coal bottom ash from Niger coal power plant and slaked lime from Burkina Faso acetylene production as industrial wastes, as well as laterite and clay from Burkina Faso as natural stones for the elaboration of thermal storage materials. The various materials have been used directly or combined together to obtain a suitable mixture. In order to determine the effect of heat treatment on the materials obtained, their structural organisation, microstructure, chemical composition and thermal behaviours were investigated. The results showed that after heat treatment of the laterite, the iron-spinel phase with inclusion of repetitive dendrites of the magnetite phase was obtained. The bottom ashes have highlighted the possibility to elaborate mullite refractory ceramic after heat treatment. The results also showed that anorthite ceramic can be synthesized from the mixtures of bottom ash with slaked lime and laterite. The obtained materials showed good thermal behaviour. Therefore, the main benefits of these materials are their sustainable character, wide availability, relevance to thermal energy storage applications up to 900 °C, and absence of use conflict.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source Solar Thermal Power, European Commission, Directorate General TREN, adapted from [4])

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. International Energy Agency (IEA): World Energy Outlook (WEO) 2016 Electricity database: electricity access in 2014—Regional aggregates (2016)

  2. African Development Bank, African Union: oil and gas in Africa. Supplement to the African Development Report (2009)

  3. ECOWAS: white paper for a regional policy on energy access (2005)

  4. World Energy Council: 2010 Survey of Energy Resources. World Energy Council, London, United Kingdom (2010)

  5. Azoumah, Y., Ramdé, E.W., Tapsoba, G., Thiam, S.: Siting guidelines for concentrating solar power plants in the Sahel: case study of Burkina Faso. Sol. Energy. 84, 1545–1553 (2010)

    Article  Google Scholar 

  6. Burkhardt, J.J., Heath, G.A., Turchi, C.S.: Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives. Environ. Sci. Technol. 45, 2457–2464 (2011)

    Article  Google Scholar 

  7. Ramdé, E.W., Azoumah, Y., Brew-Hammond, A., Rungundu, A., Tapsoba, G.: Site ranking and potential assessment for concentrating solar power in West Africa. Nat. Resour. 4, 146–153 (2013)

    Google Scholar 

  8. Py, X., Azoumah, Y., Olives, R.: Concentrated solar power: current technologies, major innovative issues and applicability to West African countries. Renew. Sustain. Energy Rev. 18, 306–315 (2013)

    Article  Google Scholar 

  9. N’Tsoukpoe, K.E., Azoumah, K.Y., Ramde, E., Fiagbe, A.K.Y., Neveu, P., Py, X., Gaye, M., Jourdan, A.: Integrated design and construction of a micro-central tower power plant. Energy Sustain. Dev. 31, 1–13 (2016)

    Article  Google Scholar 

  10. Flamant, G.: Centrales solaires thermodynamiques: vers les grandes puissances. Presented at the international conference on Solar Energy in Africa, Ouagadougou, Burkina Faso December (2012)

  11. NREL: concentrating solar power projects—Shams 1 concentrating solar power. http://www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=69 (2017)

  12. NREL: concentrating solar power projects—NOOR I concentrating solar power. http://www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=270 (2017)

  13. Practical Action: Perspectives énergétiques des populations pauvres 2014, Afrique de l’Ouest (2014)

  14. Onyeji, I., Bazilian, M., Nussbaumer, P.: Contextualizing electricity access in sub-saharan Africa. Energy Sustain. Dev. 16, 520–527 (2012)

    Article  Google Scholar 

  15. International Energy Agency (IEA): technology roadmap: solar thermal electricity—2014 edition (2014)

  16. Kearney, D., Herrmann, U., Nava, P., Kelly, B., Mahoney, R., Pacheco, J., Cable, R., Potrovitza, N., Blake, D., Price, H.: Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. Trans.-Am. Soc. Mech. Eng. J. Sol. Energy Eng. 125, 170–176 (2003)

    Article  Google Scholar 

  17. Flueckiger, S.M., Garimella, S.V.: Second-law analysis of molten-salt thermal energy storage in thermoclines. Sol. Energy. 86, 1621–1631 (2012)

    Article  Google Scholar 

  18. Pihl, E., Kushnir, D., Sandén, B., Johnsson, F.: Material constraints for concentrating solar thermal power. Integr. Energy Syst. Eng. Eur. Symp. Comput.-Aided Process Eng. 2011 44, 944–954 (2012)

    Google Scholar 

  19. Flueckiger, S.M., Yang, Z., Garimella, S.V.: Review of molten-salt thermocline tank modeling for solar thermal energy storage. Heat Transf. Eng. 34, 787–800 (2013)

    Article  Google Scholar 

  20. Li, P., Van Lew, J., Karaki, W., Chan, C., Stephens, J., Wang, Q.: Generalized charts of energy storage effectiveness for thermocline heat storage tank design and calibration. Sol. Energy. 85, 2130–2143 (2011)

    Article  Google Scholar 

  21. Singh, H., Saini, R.P., Saini, J.S.: A review on packed bed solar energy storage systems. Renew. Sustain. Energy Rev. 14, 1059–1069 (2010)

    Article  Google Scholar 

  22. Yang, Z., Garimella, S.V.: Thermal analysis of solar thermal energy storage in a molten-salt thermocline. Sol. Energy. 84, 974–985 (2010)

    Article  Google Scholar 

  23. Brosseau, D., Kelton, J.W., Ray, D., Edgar, M., Chisman, K., Emms, B.: Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants. J. Sol. Energy Eng. 127, 109–116 (2005)

    Article  Google Scholar 

  24. Benoit, H., Spreafico, L., Gauthier, D., Flamant, G.: Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: Properties and heat transfer coefficients. Renew. Sustain. Energy Rev. 55, 298–315 (2016)

    Article  Google Scholar 

  25. Al Naimi, K., Declos, T., Calvet, N.: Industrial waste produced in the UAE, valuable high-temperature materials for thermal energy storage applications. In: Proceedings of the 7th international conference on applied energy—ICAE2015, Abu Dhab (2015)

  26. Py, X., Calvet, N., Olives, R., Echegut, P., Bessada, C., Jay, F.: Low-cost recycled material for thermal storage applied to solar power plants. Presented at the 15th SolarPACES conference, Berlin (2009)

  27. Gutierrez, A., Miró, L., Gil, A., Rodríguez-Aseguinolaza, J., Barreneche, C., Calvet, N., Py, X., Inés Fernández, A., Grágeda, M., Ushak, S., Cabeza, L.F.: Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials. Renew. Sustain. Energy Rev. 59, 763–783 (2016)

    Article  Google Scholar 

  28. Schellmann, W.: Discussion of “A critique of the Schellmann definition and classification of laterite” by R.P. Bourman and C.D. Ollier (Catena 47, 117–131). CATENA. 52, 77–79 (2003)

    Article  Google Scholar 

  29. Gidigasu, M.D.: Mode of formation and geotechnical characteristics of laterite materials of Ghana in relation to soil forming factors. Eng. Geol. 6, 79–150 (1972)

    Article  Google Scholar 

  30. Nahon, D.: Altérations dans la zone tropicale. Signification à travers les mécanismes anciens et/ou encore actuels. Comptes Rendus Geosci. 335, 1109–1119 (2003)

    Article  Google Scholar 

  31. Millogo, Y., Traoré, K., Ouedraogo, R., Kaboré, K., Blanchart, P., Thomassin, J.H.: Geotechnical, mechanical, chemical and mineralogical characterization of a lateritic gravels of Sapouy (Burkina Faso) used in road construction. Constr. Build. Mater. 22, 70–76 (2008)

    Article  Google Scholar 

  32. Giorgis, I., Bonetto, S., Giustetto, R., Lawane, A., Pantet, A., Rossetti, P., Thomassin, J.-H., Vinai, R.: The lateritic profile of Balkouin, Burkina Faso: geochemistry, mineralogy and genesis. J. Afr. Earth Sci. 90, 31–48 (2014)

    Article  Google Scholar 

  33. Schellmann, W.: On the geochemistry of laterites. Chem. Erde. 45, 39–52 (1986)

    Google Scholar 

  34. Lawane, A., Vinai, R., Pantet, A., Thomassin, J., Messan, A.: hygrothermal features of laterite dimension stones for sub-saharan residential building construction. J. Mater. Civ. Eng. 26, 5014002 (2014)

  35. Zevgolis, E.N., Zografidis, C., Perraki, T., Devlin, E.: Phase transformations of nickeliferous laterites during preheating and reduction with carbon monoxide. J. Therm. Anal. Calorim. 100, 133–139 (2009)

    Article  Google Scholar 

  36. Valix, M., Cheung, W.H.: Study of phase transformation of laterite ores at high temperature. Miner. Eng. 15, 607–612 (2002)

    Article  Google Scholar 

  37. Yang, J., Zhang, G., Ostrovski, O., Jahanshahi, S.: Changes in an Australian laterite ore in the process of heat treatment. Miner. Eng. 54, 110–115 (2013)

  38. Bunjaku, A., Kekkonen, M., Holappa, L.: Phenomena in thermal treatment of lateritic nikel ores up to 1300 °C. Presented at the The Twelfth International Ferroalloys Congress Sustainable Future June 6 (2010)

  39. Fan, H., Song, B., Li, Q.: Thermal behavior of goethite during transformation to hematite. Mater. Chem. Phys. 98, 148–153 (2006)

    Article  Google Scholar 

  40. Goss, C.J.: The kinetics and reaction mechanism of the goethite to hematite transformation. Mineral. Mag. 51, 437–451 (1987)

    Article  Google Scholar 

  41. Mohamed, S., Raguilnaba, O., Jacques, T.: Effect of thermal treatments on the mineralogy and microstructure of a kaolinitic material. J. Société Ouest-Afr. Chim. 33, 15–23 (2012)

  42. Michot, A.: Caractéristiques thermophysiques de matériaux à base d’argile: évolution avec des traitements thermiques jusqu’à 1400 °C, http://epublications.unilim.fr/theses/index.php?id=5331 (2014)

  43. Sonuparlak, B., Sarikaya, M., Aksay, I.A.: Spinel phase formation during the 980 °C exothermic reaction in the kaolinite-to-mullite reaction series. J. Am. Ceram. Soc. 70, 837–842 (1987)

    Article  Google Scholar 

  44. Schneider, H., Schreuer, J., Hildmann, B.: Structure and properties of mullite—a review. J. Eur. Ceram. Soc. 28, 329–344 (2008)

    Article  Google Scholar 

  45. Kabre, T.S., Traore, K., Blanchart, P.: Mineralogy of clay raw material from Burkina Faso and Niger used for ceramic wares. Appl. Clay Sci. 12, 463–477 (1998)

    Article  Google Scholar 

  46. Dondi, M.: Clay materials for ceramic tiles from the Sassuolo District (Northern Apennines, Italy). Geology, composition and technological properties. Appl. Clay Sci. 15, 337–366 (1999)

    Article  Google Scholar 

  47. Sei, J., Abba Touré, A., Olivier-Fourcade, J., Quiquampoix, H., Staunton, S., Jumas, J.C., Womes, M.: Characterisation of kaolinitic clays from the Ivory Coast (West Africa). Appl. Clay Sci. 27, 235–239 (2004)

    Article  Google Scholar 

  48. Karfa, T.: Frittage à basse température d’une argile kaolinitique du Burkina Faso. Transformations thermiques et réorganisations structurales (2003)

  49. World Coal Association: World coal statistics, http://www.worldcoal.org/coal/uses-coal/coal-electricity. Accessed on 27 Sept 2016

  50. Vinai, R., Lawane, A., Minane, J.R., Amadou, A.: Coal combustion residues valorisation: research and development on compressed brick production. Constr. Build. Mater. 40, 1088–1096 (2013)

    Article  Google Scholar 

  51. Faik, A., Guillot, S., Lambert, J., Véron, E., Ory, S., Bessada, C., Echegut, P., Py, X.: Thermal storage material from inertized wastes: Evolution of structural and radiative properties with temperature. Sol. Energy. 86, 139–146 (2012)

    Article  Google Scholar 

  52. Kere, A., Dejean, G., Olives, R., Goetz, V., PY, X.: Vitrified industrial wastes as thermal energy storage material for high temperature applications. Presented at the International conference Waste Engineering, Porto, Portugal September 10 (2012)

  53. Sore, S.O., Kokolé, K., Messan, A.: Development of industrial waste: slaked lime through the stabilization of compressed earth blocks. International conference “Eco-materiaux de construction: Pilier de la croissance verte en Afrique?”, Ouagadougou, Burkina Faso (2013)

  54. Barbieri, L., Lancellotti, I., Manfredini, T., Queralt, I., Rincon, J., Romero, M.: Design, obtainment and properties of glasses and glass–ceramics from coal fly ash. Fuel. 78, 271–276 (1999)

    Article  Google Scholar 

  55. Jannot, Y., Meukam, P.: Simplified estimation method for the determination of the thermal effusivity and thermal conductivity using a low cost hot strip. Meas. Sci. Technol. 15, 1932 (2004)

    Article  Google Scholar 

  56. Ladevie, B., Fudym, O., Batsale, J.C.: A new simple device to estimate thermophysical properties of insulating materials. Int. Commun. Heat Mass Transf. 27, 473–484 (2000)

    Article  MATH  Google Scholar 

  57. Meffre, A., Py, X., Olives, R., Bessada, C., Veron, E., Echegut, P.: High-temperature sensible heat-based thermal energy storage materials made of vitrified MSWI Fly ashes. Waste Biomass Valorization. 6, 1003–1014 (2015)

    Article  Google Scholar 

  58. Calvet, N., Dejean, G., Unamunzaga, L., PY, X.: Waste from metallurgic industry: a sustainable high-temperature thermal energy storage material for concentrated solar power. Proceed, (July 14–19)

  59. Meffre, A., Tessier-Doyen, N., Py, X., Huger, M., Calvet, N.: Thermomechanical characterization of waste based TESM and assessment of their resistance to thermal cycling up to 1000 °C. Waste Biomass Valorization. 7, 9–21 (2015)

    Article  Google Scholar 

  60. Py, X., Calvet, N., Olives, R., Meffre, A., Echegut, P., Bessada, C., Veron, E., Ory, S.: Recycled material for sensible heat based thermal energy storage to be used in concentrated solar thermal power plants. J. Sol. Energy Eng. 133, 031008–031008 (2011)

    Article  Google Scholar 

  61. Kere, A., Goetz, V., Py, X., Olives, R., Sadiki, N., Mercier, E.: Dynamic behavior of a sensible-heat based thermal energy storage. Energy Procedia. 49, 830–839 (2014)

    Article  Google Scholar 

  62. Gautier, M., Poirier, J., Bodénan, F., Franceschini, G., Véron, E.: Basic oxygen furnace (BOF) slag cooling: laboratory characteristics and prediction calculations. Int. J. Miner. Process. 123, 94–101 (2013)

    Article  Google Scholar 

  63. Mo̸lgaard, J.: Thermal conductivity of magnetite and hematite. J. Appl. Phys. 42, 3644 (1971)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the European Union Commission and the African Union Commission for financially supporting the project “CSP4Africa” in the framework of the African Union Research Grant Program (Grant Contract n°AURG/163/2012-CRSI n° 2012/289-007). This work was also supported by the French “investments for the future” programme managed by the National Agency for Research under contracts ANR-106LABX-22-01-SOLSTICE and ANR-10-EQPX-49-SOCRATE and the EUROSUNMED European project. The authors would like to thank Francois Tsobnang, Regis Olives and Jean Marie Mancau for their scientific support and T. Emmanuel Tidorchibe for proofreading. Eric Kenda also thanks the ANSOLE Fellowship program for its financial support ANSUP 01/16-14-16-FA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Serge Kenda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenda, E.S., Py, X., N’Tsoukpoe, K.E. et al. Thermal Energy Storage Materials Made of Natural and Recycled Resources for CSP in West Africa. Waste Biomass Valor 9, 1687–1701 (2018). https://doi.org/10.1007/s12649-017-9904-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9904-2

Keywords

Navigation