Skip to main content

Advertisement

Log in

Thermomechanical Characterization of Waste Based TESM and Assessment of Their Resistance to Thermal Cycling up to 1000 °C

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The aim of this work has consisted to study the ability of an innovative thermal energy storage material called Cofalit to withstand thermal shocks under repeated thermal cycles up to 1000 °C. Starting thermomechanical properties (Young’s modulus and thermal expansion coefficient) have also been characterized from room temperature to 1000 °C respectively by non destructive pulse-echography technique and standard dilatometric equipment. As these parameters are strongly dependent on the microstructure evolutions of such Cofalit materials when the temperature evolves, complementary scanning electron microscopy observations have been performed. With a concentrating solar test facility, severe thermal cycles have been imposed at the surface of the tested materials between 500 and 1000 °C. Critical shock and ageing experimental results up to 2500 °C emphasize the sufficient refractoriness. This study highlights the wide potential of this Cofalit material for high temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ACW:

Asbestos containing waste

CAES:

Compressed air energy system

EDS:

Energy dispersive spectrometry

XRD:

X-ray diffraction

SEM:

Scanning electron microscopy

TES:

Thermal energy storage

TESM:

Thermal energy storage material

STESM:

Sustainable thermal energy storage material

GHG:

Green house gas

E:

Young’s modulus (GPa)

CTE:

Coefficient of thermal expansion (×10−6 K−1)

References

  1. IEA: key_world_energy_stats.pdf (2011)

  2. Herrmann, U., Kelly, B., Price, H.: Two-tank molten salt storage for parabolic trough solar power plant. Energy 29(5), 883–893 (2004)

    Article  Google Scholar 

  3. Fiorucci, L.C., Goldstein, S.L.: Manufacture, distribution and handling of nitrate salts for solar thermal application. Olin Corporation Report SAND81-8186 UC-62d (1982)

  4. Klein, P., Roos, T.H., Sheer, T.J.: Experimental investigation into a packed bed thermal storage solution for solar gas turbine systems. SolarPaces 2013. Energy Proc. 49, 840–849 (2014)

    Article  Google Scholar 

  5. Good, P., Zanganeh, G., Ambrosetti, G., Barbato, M.C., Pedretti, A., Steinfeld, A.: Towards a commercial parabolic trough CSP system using air as heat transfer fluid. SolarPaces 2013. Energy Proc. 49, 381–385 (2014)

    Article  Google Scholar 

  6. Gil, A., Medrano, M., Martorell, I., Lazaro, A., Dolado, P., Zalba, B., et al.: State of the art on high temperature for power generation. Part 1—concepts, materials and modellization. Renew. Sustain. Energy Rev. 14, 31–55 (2010)

    Article  Google Scholar 

  7. Medrano, M., Gil, A., Martorell, I., Potau, X., Cabeza, L.: State of the art on high-temperature thermal energy storage for power generation. Part 2—case studies. Renew. Sustain. Energy Rev. 14, 56–72 (2010)

    Article  Google Scholar 

  8. Patapy, C., Gault, C., Huger, M., Chotard, T.: Acoustic characterization and microstructure of high zirconia electrofused refractories. J. Eur. Ceram. Soc. 29(16), 3355–3362 (2009)

    Article  Google Scholar 

  9. Gallet-Doncieux, A., Bahloul, O., Gault, C., Huger, M., Chotard, T.: Investigations of SiC aggregates oxidation: Influence on SiC castables refractories life time at high temperature. J. Eur. Ceram. Soc. 32(4), 737–743 (2012)

    Article  Google Scholar 

  10. Py, X., Calvet, N., Olives, R., Meffre, A., Echegut, P., Bessada, C., Veron, E., Ory, S.: Recycled material for sensible heat based thermal energy storage to be used in concentrated solar thermal power plants. J. Sol. Energy Eng. 133, 1–8 (2011)

    Article  Google Scholar 

  11. Gomez, E., Rani, D.A., Cheeseman, C.R., Deegan, D., Wise, M., Boccaccini, A.R.: Thermal plasma technology for the treatment of wastes: A critical review. J. Hazard. Mater. 161(2), 614–626 (2009)

    Article  Google Scholar 

  12. Tessier-Doyen, N., Glandus, J.C., Huger, M.: Untypical Young’s modulus evolution of model refractories at high temperature. J. Eur. Ceram. Soc. 26(3), 289–295 (2006)

    Article  Google Scholar 

  13. Huger, M., Tessier-Doyen, N., Chotard, T., Gault, C.: Microstructure effects associated to CTE mismatch for enhancing the thermal shock resistance of refractories: investigation by high temperature ultrasounds. Ceram Forum Int. (CFI) 84(9), 93–102 (2007)

    Google Scholar 

  14. Fricker, H.W.: Regenerative thermal storage in atmospheric air system solar power plants. Energy 29, 871–881 (2004)

    Article  Google Scholar 

  15. Zunft, S., Hänel, S., Krüger, M., Dreißigacker, V., Göhring, F.: Wahl. E.: Jülich solar power tower—experimental evaluation of the storage subsystem and performance calculation. J. Sol. Energy Eng. (2011). doi:10.1115/1.4004358

    Google Scholar 

  16. Cutard, T., Fargeot, D., Gault, C., Huger, M.: Time delay and phase shift measurements for ultrasonic pulses using autocorrelation methods. J. Appl. Phys. 75(4), 1909–1913 (1994)

    Article  Google Scholar 

  17. Meffre, A., Py, X., Olives, R., Calvet, N., Faure, R., Tessier-Doyen, N., Huger, M.: High temperature TESM thermomechanical characterization and assessment of their resistance to thermal shock. International Innostock, Lleida, Spain (2012)

    Google Scholar 

  18. Meffre, A., Py, X., Olives, R., Bessada, C., Echegut, P., Michon, U.: Design and industrial elaboration of thermal energy storage units made of recycled vitrified industrial wastes. In: International ASME Conference, November 2011, Denver Colorado (2011)

  19. Joliff, Y., Absi, J., Glandus, J.C., Huger, M., Tessier-Doyen, N.: Experimental and numerical study of the thermomechanical behaviour of refractory model materials. J. Eur. Ceram. Soc. 27(2), 1513–1520 (2007)

    Article  Google Scholar 

  20. Centre d’Animation Régional En Matériaux Avances (CARMA): Les Céramiques Industrielles Applications industrielles et développements potentiels dans les Alpes-Maritimes (1999)

  21. Faik, A., Guillot, S., Lambert, J., Véron, E., Ory, S., Bessada, C., Echegut, P., Py, X.: Thermal storage material from inertized wastes: evolution of structural and radiative properties with temperature. Sol. Energy 86, 139–146 (2011)

    Article  Google Scholar 

  22. INERTAM: Fiche technique du Cofalit. http://www.inertam.com

  23. Murat, M., Bachiorrini, A., Negro, A.: Essai de caractérisation des matériaux vitreux à partir des données relatives au phénomène de dévitrification thermique. Revue Phys. Appl. 12(5), 653–666 (1977)

    Article  Google Scholar 

  24. Patapy, C., Gault, C., Huger, M., Chotard, T.: Acoustic characterization and microstructure of high zirconia electrofused refractories. J. Eur. Ceram. Soc. 29(16), 3355–3362 (2009)

    Article  Google Scholar 

  25. Nunes dos Santos, W., Nicolau dos Santos, J., Mummery, P., Wallwork, A.: Thermal diffusivity of polymers by modified angström method. Polym. Test. 29(1), 107–112 (2010)

    Article  Google Scholar 

  26. Fourcher, B., Mansouri, K.: An approximate analytical solution to the Graetz problem with periodic inlet temperature. Int. J. Heat Fluid Flow 18(2), 229–235 (1997)

    Article  Google Scholar 

  27. Massard, L.: Etude du fluage de réfractaires électrofondus du système alumine-zircone-silice. PhD Thesis, École Nationale Supérieure des Mines de Paris (2005)

  28. Yeugo Fogaing, E.: Caractérisation à haute temperature des propriétés d’élasticité de réfractaires électrofondus et de bétons réfractaires. PhD Thesis, Université de Limoges, (2006)

  29. Petroni, L.: Étude du comportement post-coulée de réfractaires électrofondus à Très Haute Teneur en Zircone (THTZ). PhD Thesis, École Nationale Supérieure des Mines de Paris (2011)

Download references

Acknowledgments

The project has been supported by the Grant of the French government through the funding of the ANR Stock-E research program SESCO. A very special acknowledgement is dedicated to the French company Europlasma/Inertam for the supplying of numerous samples of ceramics made by vitrification of asbestos containing wastes. The authors also acknowledge the contributions of Mr G. Dejean for the measurement of mechanical properties and to M. Guillot for the design of the temperature control loop.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Py.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meffre, A., Tessier-Doyen, N., Py, X. et al. Thermomechanical Characterization of Waste Based TESM and Assessment of Their Resistance to Thermal Cycling up to 1000 °C. Waste Biomass Valor 7, 9–21 (2016). https://doi.org/10.1007/s12649-015-9431-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9431-y

Keywords

Navigation