Jansson M.B.: A global survey of sediment yield. Geogr. Ann. A. 70, (1/2), 81–98 (1988)
Article
Google Scholar
Vercruysse, K., Grabowski, R.C., Rickson, R.J.: Suspended sediment transport dynamics in rivers: multi-scale drivers of temporal variation. Earth Sci. Rev. (2017)
Gay, A., Cerdan, O., Delmas, M., Desmet, M.: Variability of suspended sediment yields within the Loire river basin (France). J. Hydrol. 519, 1225–1237 (2014)
Article
Google Scholar
Udden, J.A.: Mechanical composition of clastic sediment. Geol. Soc. Am. Bull. 25, 655–744 (1914)
Article
Google Scholar
Wentworth, C.K.: A scale of grade and class terms for clastic sediments. J. Geol. 30, 377–392 (1922)
Article
Google Scholar
Schleiss, J.A.: Sedimentation of reservoirs. In: Bobrowsky, P. T. (ed.) Encyclopedia of natural hazards, pp. 901–905. Springer, Dordrecht (2013)
Chapter
Google Scholar
Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy Official J. Eur. Communities L 327, 1–73 (2000)
Law 2006–1772 on Water and Aquatic Environments. Official J. of the French Republic: 303, 125–177 (2006)
Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives Official J. Eur. Communities L 312, 3–30 (2008)
Anger, A.: Characterization of fine-grained sediments from hydroelectric dams reservoirs for an orientation towards beneficial reuse solutions. PhD thesis, University of Caen. 316 p. (2014)
Taylor, H.F.W: Cement Chemistry. Academic Press, London (1990)
Google Scholar
AFNOR. NF EN 197-1. Cement Part 1: Composition, specification and conformity criteria for common cements. 38 p. (2012)
Schneider M., Romer M., Tschudin M., Bolio H.: Sustainable cement production-present and future. Cem. Concr. Res. 41, 642–650 (2011)
Article
Google Scholar
Huntzinger D N., Eatmon T.D.: A life-cyle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J. Clean. Prod. 17, 668–675 (2009)
Article
Google Scholar
De Schepper, M., De Buysser, K., Van Driessche, I., De Belie, N.: The regeneration of cement out of Completely Recyclable Concrete: Clinker production evaluation. Constr. Build. Mater. 38, 1001–1009 (2013)
Article
Google Scholar
Puertas, F., García-Díaz, I., Barba, A., Gazulla, M.F., Palacios, M., Gómez, M.P., Martínez-Ramírez, S.: Ceramic wastes as alternative raw materials for Portland cement clinker production. Cem. Concr. Comp. 30, 798–805 (2008)
Article
Google Scholar
Iacobescu, R.I., Angelopoulos, G.N., Jones, P.T., Blanpain, B., Pontikes, Y.: Ladle metallurgy stainless steel slag as a raw material in Ordinary Portland Cement production: a possibility of industrial symbiosis. J. Clean. Prod. 112, 872–881 (2016)
Article
Google Scholar
Tsakiridis, P.E., Oustadakis, P., Agatzini-Leonardou, S.: Black dross leached residue: An alternative raw material for Portland cement clinker. Waste Biomass Valor. 5, 973–983 (2014)
Article
Google Scholar
Buruberri, L.H., Seabra, M.P., Labrincha, J.A.: Preparation of clinker from paper industry wastes. J. Hazard. Mater. 286, 252–260 (2015)
Article
Google Scholar
Yen, C.L., Tseng, D.H., Lin, T.T.: Characterization of eco-cement paste produced from waste sludges. Chemosphere. 84, 220–226 (2011)
Article
Google Scholar
Xie, Z., Xi, Y.: Use of recycled glass as a raw material in the manufacture of Portland cement. Mater. Struct. 35, 510–515 (2002)
Article
Google Scholar
Lin, Y., Zhou, S., Li, F., Yixiao, L.: Utilization of municipal sewage sludge as additives for the production of eco-cement. J. Hazard. Mater. 213–214, 457–465 (2012)
Article
Google Scholar
Xu, W., Xu J., Liu J., Li H., Cao B., Huang X., Li G.: The utilization of lime-dried sludge as resource for producing cement. J. Clean. Prod. 83, 286–293 (2014)
Article
Google Scholar
Saikia, N., Kato, S., Kojima, T.: Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash. Waste Manage. 27, 1178–1189 (2007)
Article
Google Scholar
Lam C.H.K., Barford J.P., McKay G.: Utilization of municipal solid waste incineration ash in Portland cement clinker. Clean Technol. Environ. 13, 607–615 (2011)
Article
Google Scholar
Sánchez de Rojas, M.I., Marín, F., Riviera, J., Frías, M.: Morphology and properties in blended cements with ceramic wastes as a pozzolanic material. J. Am. Ceram. Soc. 89, 3701–3705 (2006)
Article
Google Scholar
Medina, C., Sáez del Bosque, I.F., Asensio, E., Frías, M., Sánchez de Rojas, M.I.: Mineralogy and microstructure of hydrated phases during the pozzolanic reaction in the sanitary ware waste/Ca(OH)2 system. J. Am. Ceram. Soc. 99, 340–348 (2016)
Article
Google Scholar
Fernández R., Nebreda B., Vigil de la Villa R., García R., Frías M.: Mineralogical and chemical evolution of hydrated phases in the pozzolanic reaction of calcined paper sludge. Cem. Concr. Comp. 32, 775–782 (2010)
Article
Google Scholar
García, R., Vigil de la Villa, R., Vegas, I., Frías, M., Sánchez de Rojas, M.I.: The pozzolanic properties of paper sludge waste. Constr. Build. Mater. 22, 1484–1490 (2008)
Article
Google Scholar
Frías M., Villar E., Savastano H.: Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolan for cement. Cem. Concr. Comp. 33, 490–496 (2011)
Article
Google Scholar
Habeeb G.A., Mahmud H.B.: Study on properties of rice husk ash and its use as cement replacement material. Mater. Res. 13, 185–190 (2010)
Article
Google Scholar
Khalil, N.M., Hassan, E.M., Shakdofa M.M.E., Farahat, M.: Beneficiation of the huge waste quantities of barley and rice husks as well as coal fly ashes as additives for Portland cement. J. Ind. Eng. Chem. 20, 2998–3008 (2014)
Article
Google Scholar
Frías, M., Vigil de la Villa, R., García, R., Sánchez de Rojas, M.I., Valdés, A.J.: The influence of slate waste activation conditions on mineralogical changes and pozzolanic behavior. J. Am. Ceram. Soc. 96, 2276–2282 (2013)
Article
Google Scholar
Zhang, T., Zengzeng, Z.: Optimal use of MSWI bottom ash in concrete. Int. J. Conc. Struc. Mater. 8, 173–182 (2014)
Article
Google Scholar
Valenti, G., Bernardo, G., Marroccoli, M., Molino, B.: Beneficial reuse of reservoir sediment in the cement industry. In: Pellei, M., Porta, A.. (eds.) Remediation of contaminated sediments Proceedings of the Second International Conference on Remediation of Contaminated Sediments (Venice, Italy: 30 Sept-3 Oct 2003). Battelle Press, Columbus (2003)
Google Scholar
Dalton J.L., Gardner K.H., Seager T.P., Weimer M.L., Spear J.C.M., Magee B.J.: Properties of Portland cement made from contaminated sediments. Resour. Conserv. Recycl. 41, 227–247 (2004)
Article
Google Scholar
ASTM Standard C150. Standard Specification for Portland Cement. 10 p. (2016)
Aouad G., Laboudigue A., Gineys N., Abriak N.E.: Dredged sediments used as novel supply of raw material to produce Portland cement clinker. Cem. Concr. Comp. 32, 788–793 (2012)
Article
Google Scholar
Semcha A.: Valorisation des sédiments de dragage - Applications dans le BTP, cas du barrage de Fergoug. PhD Thesis, University of Reims Champagne-Ardenne. 167 p. (2006)
Dang, T.A., Kamali-Bernard, S., Prince, W.A.: Design of new blended cement based on marine dredged sediment. Constr. Build. Mater. 41, 602–611 (2013)
Article
Google Scholar
Rabehi, B., Ghernouti, Y., Driss, M.: Potential use of calcined silt of dam as a pozzolan in blended Portland cement. Int. J. Concr. Struct. Mater. 8, 259–268 (2014)
Article
Google Scholar
Snellings, R., Cizer Ö., Horckmans, L., Durdziński, P.T., Dierckx, P., Nielsen, P., Van Balen, K., Vanderwalle, L.: Properties and pozzolanic reactivity of flash calcined dredging sediments. Appl. Clay Sci. (2016)
Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)
Article
Google Scholar
Blaine R.L.: A Simplified Air Permeability Fineness Apparatus. Bull. Am. Soc. Test. Mater. 123, 51–55 (1943)
Google Scholar
AFNOR NF EN 196-6. Methods of testing cement Part 6: Determination of fineness. 22 p. (2013)
Lawrence, C. D.: The Constitution and Specification of Portland Cements. In: Hewlett, P.C. (ed.) Lea’s chemistry of cement and concrete 4th Edition, pp. 131–193. Elsevier Science and Technology Books, Oxford (2002)
Google Scholar
Gualtieri, A.F., Guagliardi, A., Iseppi, A.: The quantitative determination of the crystalline and amorphous content by the Rietveld Method: Application to glass ceramics with different adsorption coefficient. In: Mittemeijer, E.J., Scardi, P.. (eds.) Diffraction Analysis of the Microstructure of Materials, pp. 147–166. Springer, Berlin (2004)
Chapter
Google Scholar
AFNOR NF P94-048. Sols: Reconnaissance et essais - Détermination de la teneur en carbonate - Méthode du calcimètre. 11 p. (1996)
AFNOR NF EN 12880. Characterization of sludges - Determination of dry residue and water content. 14 p. (2000)
Michel F., Courard L.: Particle Size Distribution of Limestone Fillers: Granulometry and Specific Surface Area Investigations. Part. Sci. Technol. 32, 334–340 (2014)
Article
Google Scholar
Arvaniti, E.C., Juenger M.C.G., Bernal, S. A., Duchesne, J., Courard, L., Leroy, S., Provis, J.L., Klemm, A., De Belie, N.: Determination of particle size, surface area, and shape of supplementary cementitious materials by different techniques. Mater. Struct. 48, 3687–3701 (2014)
Article
Google Scholar
Rankin, G.A., Wright, F.E.: The ternary system lime-alumina-silica. Am. J. Sci. 39, 1–79 (1915)
Article
Google Scholar
Aïtcin, P.-C.: Supplementary cementitious materials and blended cements. In: Aïtcin, P.-C., Flatt, R.J.. (eds.) Science and Technology of Concrete Admixtures, pp. 53–73. Woodhead Publishing, Cambridge (2016)
Chapter
Google Scholar
Siddique, R., Khan, M.I.: Supplementary cementing materials. Springer, Berlin (2011)
Book
Google Scholar
Locher, F.W.: Cement: Principles of production and uses. Verlag Bau, Düsseldorf (2006)
Google Scholar
Kurdowski, W.: Cement manufacture. In: Bensted, J., Barnes, P. (eds.) Structure and performance of cement 2nd Edition, pp. 1–24. Spon Press, London (2002)
Google Scholar
Campbell D. H.: Microscopical examination and interpretation of Portland cement and clinker Second Edition. Portland Cement Association, Skokie (1999)
Google Scholar
Neville A.M.: Properties of concrete 5th Edition. Pearson Education Limited, Harlow (2011)
Google Scholar
Javellana M.P., Jawed I.: Extraction of free lime in portland cement and clinker by ethylene glycol. Cem. Concr. Res. 12, 399–403 (1982)
Article
Google Scholar
Schläpfer, P., Bukowski, R.: Eidgenössische Materialprüfungsanstalt an der E.T.H. Zürich. Report No. 63. Zurich (1933)
Bye, G.C.: Portland Cement Second edition: Composition, Production and Properties. Thomas Telford Publishing, London (1999)
Book
Google Scholar
Long, G.R.: Clinker Quality Characterization by Reflected Light Techniques. In: Proceedings of the Fourth International Conference on Cement Microscopy, pp. 92–109. Las Vegas (1982)
Pliskin, L.: La fabrication du ciment. Eyrolles, Paris (1993)
Google Scholar
He C., Osbæck B., Makovicky E.: Pozzolanic reactions of six principal clay minerals: activation, reactivity assessments and technological effects. Cem. Concr. Res. 25, 1691–1792 (1995)
Article
Google Scholar
Parashar, A., Krishnan, S., Bishnoi, S.: Testing of suitability of supplementary materials mixed in ternary cements. In: Scrivener, K., Favier, A.. (eds.) Calcined Clays for Sustainable Concrete, pp. 419–426. Springer, Dordrecht (2015)
Chapter
Google Scholar
AFNOR NF EN 196-5. Methods of testing cement Part 5: Pozzolanicity test for pozzolanic cement. 16 p. (2013)
Kocak Y., Nas S.: The effect of using fly ash on the strength and hydration characteristics of blended cements. Constr. Build. Mater 73, 25–32 (2014)
Article
Google Scholar
Klemczak, B., Batog, M.: Heat of hydration of low-clinker cements. Part I. Semi-adiabatic and isothermal tests at different temperature. J. Therm. Anal. Calorim. 123, 1351–1360 (2016)
Article
Google Scholar
Bonavetti V.L., Rahhal V.F., Irassar E.F.: Studies on the carboaluminate formation in limestone filler-blended cements. Cem. Concr. Res. 31, 853–859 (2001)
Article
Google Scholar
Ramezanianpour, A.A.: Cement replacement Materials: properties, durability, sustainability. Springer, Heidelberg (2014)
Book
Google Scholar
Frías Rojas, M., Sánchez de Rojas Gómez, M.I.: Natural pozzolans in eco-efficient concrete. In: Pacheco-Torgal, F., Jalali, S., Labrincha, J., John, V.M.. (eds.) Eco-efficient concrete, pp. 83–104. Woodhead Publishing Limited, Cambridge (2013)
Google Scholar
Földvari, M.: Handbook of thermogravimetric system of minerals and its use in geological practice. Hungarian Academy of Sciences, Budapest (2011)
Google Scholar
He, C., Makovicky, E., Osbæck, B.: Thermal stability and pozzolanic activity of calcined kaolin. Appl. Clay Sci. 9, 165–187 (1994)
Article
Google Scholar
Cook, D.J.: Calcined clay, shale and other soils. In: Swamy, R.N. (ed.) Cement replacement materials, pp. 40–72. Surrey University Press, London (1986)
Google Scholar
He, C., Makovicky, E., Osbæck, B.: Thermal stability and pozzolanic activity of calcined illite. Appl. Clay Sci. 9, 337–354 (1995)
Article
Google Scholar
Lemma, R., Irassar, E.F., Rahhal, V.: Calcined illitic clays as Portland cement replacements. In: Scrivener, K., Favier, A.. (eds.) Calcined Clays for Sustainable Concrete, pp. 269–276. Springer, Dordrecht (2015)
Chapter
Google Scholar
Alujas, A., Fernández, R., Quintana, R., Scrivener, K.L., Martirena, F.: Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration. Appl. Clay Sci. 108, 94–101 (2015)
Article
Google Scholar
Escalera, E., Tegman, R., Antti, M.-L., Oldén, M.: High temperature phase evolution of Bolivian kaolinitic-illitic clays heated to 1250 °C. Appl. Clay Sci. 101, 100–105 (2014)
Article
Google Scholar
Fernandez-Lopez, R.: Calcined clayey soils as a potential replacement for cement in developing countries. PhD thesis, Swiss Federal Institute of Technology Lausanne. 178 p. (2009)
Donatello S., Tyrer M., Cheeseman C.R.: Comparison of test methods to assess pozzolanic activity. Cem. Concr. Comp. 32, 121–127 (2010)
Article
Google Scholar
Tironi A., Trezza M.A., Scian A.N., Irassar E.F.: Assessment of pozzolanic activity of different calcined clays. Cem. Concr. Comp. 37, 319–327 (2013)
Article
Google Scholar
Dinakar, P., Sahoo, P. K., Sriram, G.: Effect of metakaolin content on the properties of high strength concrete. Int. J. Concr. Struct. Mater. 7, 215–223 (2013)
Article
Google Scholar
Kurdowski, W.: Cement and Concrete Chemistry. Springer, Dordrecht (2014)
Book
Google Scholar
Eglinton, M.S.: Concrete and its chemical behaviour. Thomas Telford, London (1987)
Book
Google Scholar
Moir, G.: Cements. In: Newman, J., Choo, B.S. (eds.) Advanced Concrete Technologies, pp. 1/1–1/45. Butterworth-Heinemann, Oxford (2003)
Google Scholar
Frías, M., Sánchez de Rojas, M.I., Cabrera, J.: The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars. Cem. Concr. Res. 30, 209–216 (2000)
Article
Google Scholar
Soroka I., Stern N.: Calcareous fillers and the compressive strength of Portland cement. Cem. Concr. Res. 6, 367–376 (1976)
Article
Google Scholar
Bentz, D.P., Ferraris, C.F., Jones, S.Z., Lootens, D., Zunino, F.: Limestone and silica powder replacements for cement: Early-age performance. Cem. Concr. Comp. (2017)
Poole, A., Sims, I.: Geology, aggregates and classification. In: Newman, J., Choo, B.S.. (eds.) Advanced Concrete Technologies, pp. 1/1–1/45. Butterworth-Heinemann, Oxford (2003)
Google Scholar
Akroyd T.N.W: Concrete: Properties and Manufacture. Pergamon Press Limited, Oxford (1962)
Google Scholar