Skip to main content

The Quantitative Determination of the Crystalline and the Amorphous Content by the Rietveld Method: Application to Glass Ceramics with Different Absorption Coefficients

  • Chapter
Diffraction Analysis of the Microstructure of Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 68))

Abstract

The Rietveld method provides an accurate determination of the crystalline and the amorphous fractions in polyphase mixtures. To determine the content of the amorphous phase, the sample is diluted with an internal standard which is considered as a component itself and refined with the other phases. Although the method is accurate for systems containing crystalline and amorphous phases with an absorption coefficient comparable to that of the standard, it was not thoroughly tested for systems containing a weakly or highly absorbing amorphous phase. Commonly, this is the case for glass ceramics which may contain elements with fairly different atomic number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.M. Rietveld: J. Appl. Cryst. 2, 65 (1969)

    Article  Google Scholar 

  2. D.L. Bish and S.A. Howard: J. Appl. Cryst. 21, 86 (1988)

    Article  Google Scholar 

  3. D.L. Bish and J.B. Post: Am. Min. 78, 932 (1993)

    Google Scholar 

  4. R.J. Hill: Powder Difi. 6(2), 74 (1991)

    Article  ADS  Google Scholar 

  5. G. Artioli, A. Kern, M. Marchi and M. Dapiaggi: Collected Abstracts, Proc. EPDIC-8. (The 8th European Powder Diffraction Conference, Uppsala (SW) 23–26 May 2002) p. 202

    Google Scholar 

  6. A.G. De La Torre, S. Bruque and M.A.G. Aranda: J. Appl. Cryst. 34, 196 (2000)

    Article  Google Scholar 

  7. A.G. De la Torre, I. Pajares, S. Martinez-Ramirez, S. Bruque and M.A.G. Aranda: Collected Abstracts. (Proc. EPDIC-8, The 8th European Powder Diffraction Conference, Uppsala (SW) 23–26 May 2002) p. 201

    Google Scholar 

  8. F.R. Feret and D. Roy: Spectrochimica Acta B 57, 551 (2002)

    Article  ADS  Google Scholar 

  9. A.F. Gualtieri: J. Appl. Cryst. 33, 267 (2000)

    Article  Google Scholar 

  10. F. Guirado, S. Gali and S. Chinchón: Cement and Concrete Res. 30, 1023 (2000)

    Article  Google Scholar 

  11. X. Orlhac, C. Fillet, P. Deniard, A.M. Dulac and R. Brec: J. Appl. Cryst. 34, 114 (2000)

    Article  Google Scholar 

  12. P. Riello, P. Canton and G. Fagherazzi: J. Appl. Cryst. 31, 78 (1998a)

    Article  Google Scholar 

  13. P. Riello, G. Fagherazzi and P. Canton: Acta Cryst. A 54, 219 (1998b)

    Article  Google Scholar 

  14. W. Pitschke, N. Mattern and H. Hermann: Powder Diff. 8(1), 74 (1993a)

    Article  ADS  Google Scholar 

  15. W. Pitschke, N. Mattern and Hermann: Powder Diff. 8(4), 223 (1993b)

    Article  ADS  Google Scholar 

  16. R.J. Harrison and A. Paskin: Acta Cryst. A 43, 401 (1964)

    Google Scholar 

  17. P.M. De Wolff: Acta Cryst. 9, 682 (1956)

    Article  MathSciNet  Google Scholar 

  18. P. Suortti: J. Appl. Cryst. 5, 325 (1972)

    Article  Google Scholar 

  19. C.J. Sparks, K. Kumar, E.D. Specht, P. Zschack and G.E. Ice: Adv. X-ray Anal. 35, 57 (1991)

    Google Scholar 

  20. R. Kumar, C.J. Sparks, T. Shiraishi, E.D. Specht, P. Zschack, G.E. Ice and K. Hisatune: Mat. Res. Soc. Symp. Proc. 213, 369 (1991)

    Article  Google Scholar 

  21. G.W. Brindley: Philos. Mag. 36, 347 (1945)

    Google Scholar 

  22. J.C. Taylor and C.E. Matulis: J. Appl. Cryst. 24, 14 (1991)

    Article  Google Scholar 

  23. H. Hermann and M. Ermrich: Acta Cryst. A 43, 401 (1987)

    Article  Google Scholar 

  24. H. Hermann and M. Ermrich: Powder Diff. 4(4), 189 (1989)

    Article  ADS  Google Scholar 

  25. H. Liu and C. Kuo: Mat. Letters 26, 171 (1996)

    Article  Google Scholar 

  26. R.S. Winburn, D.G. Grier, G.J. McCarthy and R.B. Peterson: Powder Diff. 15(3), 163 (2000b)

    Article  ADS  Google Scholar 

  27. R.S. Winburn: Ph.D. dissertation (North Dakota State University, Fargo USA 1999a)

    Google Scholar 

  28. R.S. Winburn, S.L. Lerach, B.R. Jarabek, M.A. Wisdom, D.G. Grier and G.J. McCarthy: Adv. X-ray Anal. 42, 387 (2000b)

    Google Scholar 

  29. I.C. Madsen, N.V.Y. Scarlett, L.M.D. Cranswick and L. Thaung: J. Appl. Cryst. 34, 409 (2001)

    Article  Google Scholar 

  30. A.J. Mandile and A.C. Hutton: Intern. J. Of Coal Geology 28, 51 (1995)

    Article  Google Scholar 

  31. M. Bellotto and C. Cristiani: Proc. EPDIC1, Munich 1991, 64 (1991) p. 64

    Google Scholar 

  32. G. Artioli, G. Alberti, G. Cagossi and M. Bellotto, in: Atti 1° Convegno Italiano di Scienza e Tecnologia delle Zeoliti. Ed. by C. Colella (De Frede, Napoli 1991) p261–270

    Google Scholar 

  33. A.F. Gualtieri and G. Artioli: Powder Diff. 10(4), 269 (1995)

    Article  ADS  Google Scholar 

  34. A.F. Gualtieri: Powder Diff. 11[2], 97 (1996)

    Article  ADS  Google Scholar 

  35. A.F. Gualtieri and M. Zanni: Mat. Science Forum 278–281, 834 (1997)

    Google Scholar 

  36. P.W. MacMillan: Glass-ceramics. (Academic Press, London 1979) pp. 283

    Google Scholar 

  37. J.W. Visser and P.M. De Woff: Report 641.109. (Technisch Physische Dienst, Delft 1964)

    Google Scholar 

  38. D.C. Creagh. In: Int. tables for Crystallography. Vol. C, IUCr, (Kluver Academic Publishers, 1995) p. 182–189

    Google Scholar 

  39. A.L. Tisdall: Australian J. of Agricultural Res. 2, 349 (1951)

    Article  Google Scholar 

  40. D.L. Bish and R.C. Reynolds Jr.: Mineralogy 20, 73 (1989)

    Google Scholar 

  41. NIST SRPM (1999). SRM 676, 100 Bureau Drive, Gaithersburg, MD 208992322 USA

    Google Scholar 

  42. J.P. Cline and R.B. Von Dreele: The Denver X-ray Conference. (Colorado Springs, CO 1998) (unpublished)

    Google Scholar 

  43. J.P. Cline and R.B. Von Dreele: Late contribution at the Size-Strain III Conference. December 2–5, 2001 (Trento, Italy 2001)

    Google Scholar 

  44. A.C. Larson and R.B. Von Dreele: Los Alamos National Laboratory Report LAUR 86–748. (1994)

    Google Scholar 

  45. A. Altomare, M.C. Burla, C. Giacovazzo, A. Guagliardi, A.G. Moliterni, G. Polidori and R. Rizzi: J. Appl. Cryst. 34, 392 (2001)

    Article  Google Scholar 

  46. N. Ishizawa, T. Miyata, I. Minato, F. Marumo and S. Iwai: Acta Cryst. B 36, 228 (1980)

    Article  Google Scholar 

  47. K. Sudarsanan and R.A. Young: Acta Cryst. B 25, 1534 (1969)

    Article  Google Scholar 

  48. Y. Le Page and G. Donnay: Acta Cryst. B 32, 2456 (1976)

    Article  Google Scholar 

  49. R.M. Hazen and L. W. Finger: Am. Min. 79, 196 (1979)

    Google Scholar 

  50. R.C. Peterson, G.A. Lager and R.L. Hitterman: Am. Min. 76, 1455 (1991)

    Google Scholar 

  51. N. Blumental, F.S. Brugner and J.E. Garner: J. Electrochem. Soc. 120, 1230 (1973)

    Article  Google Scholar 

  52. B.L. Davis and D.K. Smith: Powder Diff. 3(4), 205 (1988)

    Article  ADS  Google Scholar 

  53. H.P. Klug and L.E. Alexander: X-Ray diffraction procedures. (Wiley, New York 1974) pp. 716

    Google Scholar 

  54. C.R. Ward, J.C. Taylor, C.E. Matulis and L.S. Dale: Int. J. of Coal Geology 46, 67 (2001)

    Article  Google Scholar 

  55. P.G. Weidler, J. Luster, J. Schneider, H. Sticher and A.U. Gehring: Europ. J. of Soil Science 49, 95 (1998)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gualtieri, A.F., Guagliardi, A., Iseppi, A. (2004). The Quantitative Determination of the Crystalline and the Amorphous Content by the Rietveld Method: Application to Glass Ceramics with Different Absorption Coefficients. In: Mittemeijer, E.J., Scardi, P. (eds) Diffraction Analysis of the Microstructure of Materials. Springer Series in Materials Science, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06723-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06723-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07352-6

  • Online ISBN: 978-3-662-06723-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics