Skip to main content

Advertisement

Log in

Waste Polyolefins to Liquid Fuels via Pyrolysis: Review of Commercial State-of-the-Art and Recent Laboratory Research

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

With generation of waste plastics increasing, current EU legislation dictates high recovery rates and policy favours waste management technology choices that occupy a high position on the waste management hierarchy. Pyrolysis is a thermochemical conversion technology that can be considered a ‘feedstock recycling’ process and may play an increasing role in integrated waste management systems of the future. The objective of this article is to present a review of current state-of-the-art commercial pyrolysis processes for the production of liquid transport fuels from waste polyolefins (polyethylenes and polypropylenes). Current plastic waste generation and management practices are briefly summarised. Waste management infrastructure in Europe is reliant on landfill, incineration and mechanical recycling, while feedstock recycling plays an insignificant role. Plastic-to-liquid platforms including delocalised pyrolysis followed by centralised upgrading, stand alone facilities, and integrated waste management infrastructure concepts are briefly discussed. Commercial operations and their process configurations are compared. Reactor technology for cracking of plastic waste is presented. Important issues like fuel quality and contamination are also discussed. Fuel finishing operations and fuel additives required to achieve an engine ready fuel are described in the final section. Recently published laboratory research in thermal and catalytic pyrolysis and integrated and co-processing studies are also summarised in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. APME: The compelling facts about plastics 2009: an analysis of European plastics production, demand and recovery for 2008. Association of Plastics Manufacturers Europe, Brussels (2009)

  2. Nzihou, A.: Waste and biomass valorization. Waste Biomass Valoriz. 1(1), 1–2 (2010). doi:10.1007/s12649-010-9013-y

  3. Moore, C.J.: Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environ. Res. 108(2), 131–139 (2008)

    Article  Google Scholar 

  4. WRAP: The Chinese markets for recovered paper and plastics. Waste and Resources Action Program, Oxan, UK (2009)

  5. Buekens, A.: Introduction to feedstock recycling of plastics. In: Scheirs, J., Kaminsky, W. (eds.) Feedstock Recycling and Pyrolysis of Waste Plastics, pp. 1–41. Wiley, New York (2006)

    Chapter  Google Scholar 

  6. Fukushima, M., Wu, B., Ibe, H., Wakai, K., Sugiyama, E., Abe, H., Kitagawa, K., Tsuruga, S., Shimura, K., Ono, E.: Study on dechlorination technology for municipal waste plastics containing polyvinyl chloride and polyethylene terephthalate. J. Mater. Cycles Waste Manag. 12(2), 108–122 (2010)

    Article  Google Scholar 

  7. Manos, G.: Catalytic degradation of plastic waste to fuel over microporous materials. In: Scheirs, J., Kaminsky, W. (eds.) Feedstock Recycling and Pyrolysis of Waste Plastics, pp. 193–207. Wiley, New York (2006)

    Chapter  Google Scholar 

  8. Scheirs, J.: Overview of commercial pyrolysis processes for waste plastics. In: Scheirs, J., Kaminsky, W. (eds.) Feedstock Recycling and Pyrolysis of Waste Plastics, pp. 381–433. Wiley, New York (2006)

    Chapter  Google Scholar 

  9. Stelmachowski, M.: Thermal conversion of waste polyolefins to the mixture of hydrocarbons in the reactor with molten metal bed. Energy Convers. Manag. 51(10), 2016–2024 (2010)

    Article  Google Scholar 

  10. Chenier, P.J.: Survey of Industrial Chemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York (2002)

    Book  Google Scholar 

  11. DB: Oil and Gas for Beginners. Deutsche Bank AB, London (2010)

    Google Scholar 

  12. Ray, R., Thorpe, R.B.: A Comparison of gasification with pyrolysis for the recycling of plastic containing wastes. Int. J. Chem. React. Eng. 5(A85), 1–14 (2007)

    Google Scholar 

  13. Aguado, J., Serrano, D.P.: Feedstock Recycling of Plastic Waste. The Royal Society of Chemistry, Cambridge, UK (1999)

    Google Scholar 

  14. UNEP: Converting waste plastics into a resource. Compendium of technologies. United Nations Environmental Programme, Osaka/Shiga, Japan (2009)

  15. Achilias, D.S., Antonakou, E., Roupakias, C., Megalokonomos, P., Lappas, A.: Recycling techniques of polyolefins from plastic wastes. Global Nest J. 10(1), 114–122 (2008)

    Google Scholar 

  16. Panda, A.K., Singh, R.K., Mishra, D.K.: Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products-A world prospective. Renew. Sustain. Energy Rev. 14(1), 233–248 (2009)

    Article  Google Scholar 

  17. ACCR: Good practice guide on waste plastics recycling: a guide by and for local and regional authorities. Association of Cities and Regions for Recycling, Brussels, Belgium (2004)

  18. Minister for the Environment and Local Government: Changing our Ways. Department of the Environment and Local Government, Dublin, Ireland (1998)

  19. Forfás: Waste Management in Ireland: Benchmarking Analysis and Policy Priorities. Forfás, Dublin, Ireland (2009)

    Google Scholar 

  20. DEHLG: Waste Management. Taking Stock and Moving Forward. Department of the Environment Heritage and Local Government, Dublin (2004)

  21. Al-Salem, S.M., Lettieri, P., Baeyens, J.: Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manage. 36(1), 103–129 (2009)

    Google Scholar 

  22. Aguado, J., Serrano, D.P., Escola, J.M.: Fuels from waste plastics by thermal and catalytic processes: a review. Ind. Eng. Chem. Res. 47(21), 7982–7992 (2008)

    Article  Google Scholar 

  23. Aguado, J., Serrano, D.P., San Miguel, G.: European trends in the feedstock recycling of plastic wastes. Global NEST J. 9(1), 12–19 (2007)

    Google Scholar 

  24. Keane, M.A.: Catalytic transformation of waste polymers to fuel oil. ChemSusChem 2(3), 207–214 (2009)

    Article  Google Scholar 

  25. Castaldi, M., Themelis, N.: The case for increasing the global capacity for waste to energy (WTE). Waste Biomass Valoriz 1(1), 91–105 (2010)

    Article  Google Scholar 

  26. Psomopoulos, C.S., Bourka, A., Themelis, N.J.: Waste-to-energy: a review of the status and benefits in USA. Waste Manage. 29(5), 1718–1724 (2009)

    Article  Google Scholar 

  27. Themelis, N.J.: Thermal treatment review. Waste Manage. World 8(4), 40–47 (2007)

    Google Scholar 

  28. WRAP: Environmental Benefits of Recycling. An International Review of Life Cycle Comparisons for Key Materials in the UK Recycling Sector. Waste and Resources Action Program, Oxon, UK (2009)

    Google Scholar 

  29. Hiskakis, M., Briassoulis, D., Teas, C., Babou, E., Liantzas, K.: Using agricultural plastic waste (APW) as alternative solid fuel (ASF) for energy recovery in a cement industry kiln—a pilot test. In: Agricultural and Biosystems Engineering for a Sustainable World. International Conference on Agricultural Engineering, Hersonissos, Crete, Greece, 23–25 June 2008, pp. OP-320. European Society of Agricultural Engineers (AgEng)

  30. Lagan Cement: Lagan Cement to Further Reduce Fossil Fuel use, CO2 Emissions. Lagan Cement, Westmeath, Ireland (2008)

    Google Scholar 

  31. Themelis, N.J.: Developments in thermal treatment technologies. In: Castaldi, M.J., White, M. (eds.) 16th Annual North American Waste to Energy Conference, Philadelphia, PA, 19–21 May 2008, pp. 85–92. Amer Soc Mechanical Engineers

  32. Stehlík, P.: Contribution to advances in waste-to-energy technologies. Journal of Cleaner Production 17(10), 919–931 (2009)

    Article  Google Scholar 

  33. Malkow, T.: Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal. Waste Manage. 24(1), 53–79 (2004)

    Article  Google Scholar 

  34. Gomez, E., Rani, D.A., Cheeseman, C.R., Deegan, D., Wise, M., Boccaccini, A.R.: Thermal plasma technology for the treatment of wastes: a critical review. J. Hazard. Mater. 161(2–3), 614–626 (2009)

    Article  Google Scholar 

  35. Heberlein, J., Murphy, A.B.: Thermal plasma waste treatment. J. Phys. D-Appl. Phys. 41(5), 20 (2008)

    Google Scholar 

  36. Zhang, G.-H., Zhu, J.-F., Okuwaki, A.: Prospect and current status of recycling waste plastics and technology for converting them into oil in China. Resour. Conserv. Recycl. 50(3), 231–239 (2007)

    Article  MATH  Google Scholar 

  37. Okuwaki, A.: Feedstock recycling of plastics in Japan. Polym. Degrad. Stab. 85(3), 981–988 (2004)

    Article  Google Scholar 

  38. Garforth, A.A., Ali, S., Hernández-Martínez, J., Akah, A.: Feedstock recycling of polymer wastes. Curr. Opin. Solid State Mater. Sci. 8(6), 419–425 (2004)

    Article  Google Scholar 

  39. Thomé-Kozmiensky, K.J., Willnow, S., Fleischer, G., Schmidt, W.-P., Christ, C., Menges, G., Bilitwski, B., Loll, U., Gromotka, H., Amsoneit, N., Baerns, M., Majunke, F., Ehrig, H.-J., Schneider, H.-J., Gossow, V., Habashi, F.: Waste. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley, New York (2008)

  40. Vicente, G., Aguado, J., Serrano, D.P., Sánchez, N.: HDPE chemical recycling promoted by phenol solvent. J. Anal. Appl. Pyrol. 85(1–2), 366–371 (2009)

    Article  Google Scholar 

  41. Miller, S.J., Shah, N., Huffman, G.P.: Conversion of waste plastic to lubricating base oil. Energy Fuels 19(4), 1580–1586 (2005)

    Article  Google Scholar 

  42. Ali, M.F., Siddiqui, M.N.: The conversion of waste plastics/petroleum residue mixtures to transportation fuels. In: Scheirs, J., Kaminsky, W. (eds.) Feedstock recycling and pyrolysis of waste plastics, pp. 363–380. Wiley, New York (2006)

    Chapter  Google Scholar 

  43. Behzadi, S., Farid, M.: Liquid fuel from plastic wastes using extrusion-rotary kiln reactors. In: Scheirs, J., Kaminsky, W. (eds.) Feedstock Recycling and Pyrolysis of Waste Plastics, pp. 531–548. Wiley, New York (2006)

    Chapter  Google Scholar 

  44. Buttker, B., Giering, R., Schlotter, U., Himmelreich, B., Wittstock, K.: Full Scale Industrial Recovery trials of shredder residue in high temperature slagging-bed-gasifier in Germany. Plastics Europe, Brussels, Belgium (2005)

    Google Scholar 

  45. Lane, J.: The lowdown on Enerkem’s landmark Edmonton advanced biofuels project. http://biofuelsdigest.com/bdigest/2010/09/01/the-lowdown-on-enerkems-landmark-edmonton-advanced-biofuels-project/ (2010). Accessed 2010/09/01

  46. Buergeler, T.: Blast Furnace Operations. In: IdentiPlast 2009 Conference, Brussels, April 20–21 (2009)

  47. Matsumiya, T.: Steel research and development in the aspect for a sustainable society. Scandanavian J. Metall. 34(4), 256–267 (2005)

    Article  Google Scholar 

  48. Sekine, Y., Fukuda, K., Kato, K., Yoshihiro, A., Matsuno, Y.: CO2 reduction potentials by utilizing waste plastics in steel works. Int. J. Life Cycle Assess. 14, 122–136 (2009)

    Article  Google Scholar 

  49. Kato, K., Nomura, S., Uematsu, H.: Waste plastics recycling process using coke ovens. J. Mater. Cycles Waste Manage. 5(2), 98–101 (2003)

    Article  Google Scholar 

  50. Aguado, J., Serrano, D.P., Escola, J.M.: Catalytic upgrading of plastic wastes. In: Scheirs, J., Kaminsky, W. (eds.) Feedstock Recycling and Pyrolysis of Waste Plastics, pp. 73–110. Wiley, New York (2006)

    Chapter  Google Scholar 

  51. Lee, K.H.: Thermal and Catalytic Degradation of Waste HDPE. Feedstock Recycling and Pyrolysis of Waste Plastics. Wiley, New York (2006)

    Google Scholar 

  52. Marcilla, A., Gómez-Siurana, A., Berenguer, D.: Study of the early deactivation in pyrolysis of polymers in the presence of catalysts. J. Anal. Appl. Pyrol. 79(1–2), 443–449 (2007)

    Article  Google Scholar 

  53. Marcilla, A., Gómez-Siurana, A., Valdés, F.: Catalytic pyrolysis of LDPE over H-beta and HZSM-5 zeolites in dynamic conditions: study of the evolution of the process. J. Anal. Appl. Pyrol. 79(1–2), 433–442 (2007)

    Article  Google Scholar 

  54. Venderbosch, R., Prins, W.: Fast pyrolysis technology development. Biofuels, Bioproducts Biorefining 4(2), 178–208 (2010)

    Article  Google Scholar 

  55. Lin, Y.C., Huber, G.W.: The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energy Environ. Sci. 2(1), 68–80 (2009)

    Article  Google Scholar 

  56. Huber, G.W., Corma, A.: Synergies between bio- and oil refineries for the production of fuels from biomass. Angew. Chem. Int. Ed. 46(38), 7184–7201 (2007)

    Article  Google Scholar 

  57. Miskolczi, N.: Kinetic model of the chemical and catalytic recycling of waste polyethylene into fuels. In: Scheirs, J., Kaminsky, W. (eds.) Feedstock Recycling and Pyrolysis of Waste Plastics, pp. 225–247. Wiley, New York (2006)

    Chapter  Google Scholar 

  58. Yanik, J., Karayildirim, T.: Liquefaction of Municipal Waste Plastics over Acidic and Nonacidic Catalysts. Feedstock Recycling and Pyrolysis of Waste Plastics. Wiley, New York (2006)

    Google Scholar 

  59. Marcilla, A., Ruiz-Femenia, R., Hernández, J., García-Quesada, J.C.: Thermal and catalytic pyrolysis of crosslinked polyethylene. J. Anal. Appl. Pyrol. 76(1–2), 254–259 (2006)

    Article  Google Scholar 

  60. Irion, W.W., Neuwirth, O.S.: Oil Refining. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2005)

    Google Scholar 

  61. White, R.L.: Acid-catalyzed cracking of polyolefins: primary reaction mechanisms. In: Scheirs, J., Kaminsky, W. (eds.) Feedstock Recycling and Pyrolysis of Waste Plastics, pp. 43–72. Wiley, New York (2006)

    Chapter  Google Scholar 

  62. Bhaskar, T., Sakata, Y.: Liquefaction of PVC mixed plastics. In: Scheirs, J., Kaminsky, W. (eds.) Feedstock Recycling and Pyrolysis of Waste Plastics, pp. 493–529. Wiley, New York (2006)

    Chapter  Google Scholar 

  63. Bakker, E.J., Rem, P.C., Fraunholcz, N.: Upgrading mixed polyolefin waste with magnetic density separation. Waste Manage. 29(5), 1712–1717 (2009)

    Article  Google Scholar 

  64. Bezati, F., Froelich, D., Massardier, V., Maris, E.: Addition of tracers into the polypropylene in view of automatic sorting of plastic wastes using X-ray fluorescence spectrometry. Waste Manage. 30(4), 591–596 (2010)

    Article  Google Scholar 

  65. Carvalho, M.T., Ferreira, C., Portela, A., Santos, J.T.: Application of fluidization to separate packaging waste plastics. Waste Manage. 29(3), 1138–1143 (2009)

    Article  Google Scholar 

  66. Yoshida, M., Nakatsukasa, S., Nanba, M., Gotoh, K., Zushi, T., Kubo, Y., Oshitani, J.: Decrease of Cl contents in waste plastics using a gas-solid fluidized bed separator. Adv. Powder Technol. 21(1), 69–74 (2010)

    Article  Google Scholar 

  67. Shent, H., Pugh, R.J., Forssberg, E.: A review of plastics waste recycling and the flotation of plastics. Resour. Conserv. Recycl. 25(2), 85–109 (1999)

    Article  Google Scholar 

  68. Gent, M.R., Menendez, M., Toraño, J., Isidro, D., Torno, S.: Cylinder cyclone (LARCODEMS) density media separation of plastic wastes. Waste Manage. 29(6), 1819–1827 (2009)

    Article  Google Scholar 

  69. Lee, K.-H.: Pyrolysis of municipal plastic wastes separated by difference of specific gravity. J. Anal. Appl. Pyrol. 79(1–2), 362–367 (2007)

    Article  Google Scholar 

  70. Bhaskar, T., Negoro, R., Muto, A., Sakata, Y.: Prevention of chlorinated hydrocarbons formation during pyrolysis of PVC or PVDC mixed plastics. Green Chem. 8(8), 697–700 (2006)

    Article  Google Scholar 

  71. Miskolczi, N., Bartha, L., Angyal, A.: Pyrolysis of polyvinyl chloride (PVC)-containing mixed plastic wastes for recovery of hydrocarbons. Energy Fuels 23(5), 2743–2749 (2009)

    Article  Google Scholar 

  72. Hall, W.J., Williams, P.T.: Pyrolysis of brominated feedstock plastic in a fluidised bed reactor. J. Anal. Appl. Pyrol. 77(1), 75–82 (2006)

    Article  Google Scholar 

  73. Cho, M.-H., Jung, S.-H., Kim, J.-S.: Pyrolysis of mixed plastic wastes for the recovery of benzene, toluene, and xylene (BTX) aromatics in a fluidized bed and chlorine removal by applying various additives. Energy Fuels 24(2), 1389–1395 (2009)

    Article  Google Scholar 

  74. Jung, S.-H., Cho, M.-H., Kang, B.-S., Kim, J.-S.: Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Process. Technol. 91(3), 277–284 (2010)

    Article  Google Scholar 

  75. Murata, K., Brebu, M., Sakata, Y.: The effect of PVC on thermal and catalytic degradation of polyethylene, polypropylene and polystyrene by a continuous flow reactor. J. Anal. Appl. Pyrol. 86(1), 33–38 (2009)

    Article  Google Scholar 

  76. Zadgaonkar, A.: Process and equipment for conversions of waste plastics into fuels. In: Scheirs, J., Kaminsky, W. (eds.) Feedstock Recycling and Pyrolysis of Waste Plastics, pp. 709–728. Wiley, New York (2006)

    Chapter  Google Scholar 

  77. DeWhitt, K.: System for Recycling Plastics (US 7,758,729 B1). USA Patent, 20 Jul 2010

  78. Dabelstein, W., Reglitzky, A., Schutze, A., Reders, K.: Automotive fuels. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley, Weinheim (2007)

  79. Kaminsky, W.: The hamburg fluidized-bed pyrolysis process to recycle polymer wastes and tires. In: Scheirs, J., Kaminsky, W. (eds.) Feedstock Recycling and Pyrolysis of Waste Plastics, pp. 475–491. Wiley, New York (2006)

    Chapter  Google Scholar 

  80. Shelley, M.D., El-Halwagi, M.M.: Techno-economic feasibility and flowsheet synthesis of scrap tire/plastic waste liquefaction. J. Elastomers Plast. 31(3), 232–254 (1999)

    Google Scholar 

  81. Kaminsky, W., Sinn, H.: Petrochemical processes for recycling plastics. In: Brandrup, J., Bittner, M., Michaeli, W., Menges, G. (eds.) Recycling and Recovery of Plastics. Hansen, Munich (1996)

    Google Scholar 

  82. Kaminsky, W., Hartmann, F.: New pathways in plastics recycling. Angew. Chem. Int. Ed. 39(2), 331–333 (2000)

    Article  Google Scholar 

  83. Mertinkat, J., Kirsten, A., Predel, M., Kaminsky, W.: Cracking catalysts used as fluidized bed material in the Hamburg pyrolysis process. J. Anal. Appl. Pyrol. 49(1–2), 87–95 (1999)

    Article  Google Scholar 

  84. Kaminsky, W., Zorriqueta, I.-J.N.: Catalytical and thermal pyrolysis of polyolefins. J. Anal. Appl. Pyrol. 79(1–2), 368–374 (2007)

    Article  Google Scholar 

  85. Aguado, R., Olazar, M., Gaisan, B., Prieto, R., Bilbao, J.: Kinetic study of polyolefin pyrolysis in a conical spouted bed reactor. Ind. Eng. Chem. Res. 41(18), 4559–4566 (2002)

    Article  Google Scholar 

  86. Aguado, R., Olazar, M., San Jose, M.J., Gaisan, B., Bilbao, J.: Wax formation in the pyrolysis of polyolefins in a conical spouted bed reactor. Energy Fuels 16(6), 1429–1437 (2002)

    Article  Google Scholar 

  87. Elordi, G., Olazar, M., Aguado, R., Lopez, G., Arabiourrutia, M., Bilbao, J.: Catalytic pyrolysis of high density polyethylene in a conical spouted bed reactor. J. Anal. Appl. Pyrol. 79(1–2), 450–455 (2007)

    Article  Google Scholar 

  88. Elordi, G., Olazar, M., Lopez, G., Amutio, M., Artetxe, M., Aguado, R., Bilbao, J.: Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor. J. Anal. Appl. Pyrol. 85(1–2), 345–351 (2009)

    Article  Google Scholar 

  89. Olazar, M., Lopez, G., Amutio, M., Elordi, G., Aguado, R., Bilbao, J.: Influence of FCC catalyst steaming on HDPE pyrolysis product distribution. J. Anal. Appl. Pyrol. 85(1–2), 359–365 (2009)

    Article  Google Scholar 

  90. Salmiaton, A., Garforth, A., Fakhru’l-Razi, A.: Recycling of polymer waste with fluid catalytic cracking catalysts. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 41, 1145–1154 (2006)

    Google Scholar 

  91. Xingzhong, Y.: Converting waste plastics into liquid fuel by pyrolysis: developments in China. In: Scheirs, J., Kaminsky, W. (eds.) Feedstock Recycling and Pyrolysis of Waste Plastics, pp. 729–755. Wiley, New York (2006)

    Chapter  Google Scholar 

  92. Zeng, G.M., Yuan, X.Z., Hu, T.J., Yan, G., Yin, Y.Y., Li, J.B.: Manufacture of liquid fuel by catalytic cracking waste plastics in a fluidized bed. Energy Sourc. 25(6), 577–590 (2003)

    Google Scholar 

  93. Westerhout, R.W.J., Kuipers, J.A.M., van Swaaij, W.P.M.: Experimental determination of the yield of pyrolysis products of polyethene and polypropene. Influence of reaction conditions. Ind. Eng. Chem. Res. 37(3), 841–847 (1998)

    Article  Google Scholar 

  94. Westerhout, R.W.J., Waanders, J., Kuipers, J.A.M., van Swaaij, W.P.M.: Recycling of polyethene and polypropene in a novel bench-scale rotating cone reactor by high-temperature pyrolysis. Ind. Eng. Chem. Res. 37(6), 2293–2300 (1998)

    Article  Google Scholar 

  95. Westerhout, R.W.J., Waanders, J., Kuipers, J.A.M., van Swaaij, W.P.M.: Development of a continuous rotating cone reactor pilot plant for the pyrolysis of polyethene and polypropene. Ind. Eng. Chem. Res. 37(6), 2316–2322 (1998)

    Article  Google Scholar 

  96. Westerhout, R.W.J., Waanders, J., Kuipers, J.A.M., van Swaaij, W.P.M.: Kinetics of the low-temperature pyrolysis of polyethene, polypropene, and polystyrene modeling, experimental determination, and comparison with literature models and data. Ind. Eng. Chem. Res. 36(6), 1955–1964 (1997)

    Article  Google Scholar 

  97. Walendziewski, J.: Thermal and catalytic conversion of polyolefins. In: Scheirs, J., Kaminsky, W. (eds.) Feedstock Recycling and Pyrolysis of Waste Plastics, pp. 111–127. Wiley, New York (2006)

    Chapter  Google Scholar 

  98. Murata, K., Brebu, M., Sakata, Y.: Thermal degradation of polyethylene into fuel oil over silica-alumina by a continuous flow reactor. J. Anal. Appl. Pyrol. 86(2), 354–359 (2009)

    Article  Google Scholar 

  99. Hornung, A., Seifert, H.: Rotary Kiln pyrolysis of polymers containing heteroatoms. In: Scheirs, J., Kaminsky, W. (eds.) Feedstock Recycling and Pyrolysis of Waste Plastics, pp. 549–567. Wiley, New York (2006)

    Chapter  Google Scholar 

  100. Okuwaki, A., Yoshioka, T., Asai, M., Tachibana, H., Wakai, K., Tada, K.: The Liquefaction of Plastic Containers and Packaging in Japan. Feedstock Recycling and Pyrolysis of Waste Plastics. Wiley, New York (2006)

    Google Scholar 

  101. Walendziewski, J.: Continuous flow cracking of waste plastics. Fuel Process. Technol. 86(12–13), 1265–1278 (2005)

    Article  Google Scholar 

  102. Serrano, D.P., Aguado, J., Escola, J.M., Garagorri, E.: Conversion of low density polyethylene into petrochemical feedstocks using a continuous screw kiln reactor. J. Anal. Appl. Pyrol. 58–59, 789–801 (2001)

    Article  Google Scholar 

  103. Aguado, J., Serrano, D.P., Escola, J.M., Garagorri, E.: Catalytic conversion of low-density polyethylene using a continuous screw kiln reactor. Catal Today 75(1–4), 257–262 (2002)

    Article  Google Scholar 

  104. Kodera, Y., Ishihara, Y., Kuroki, T.: Novel process for recycling waste plastics to fuel gas using a moving-bed reactor. Energy Fuels 20(1), 155–158 (2006). doi:10.1021/ef0502655

  105. Wallis, M.D., Sarathy, S., Bhatia, S.K., Massarotto, P., Kosior, E., Mercier, A.: Catalytic degradation of high-density polyethylene in a reactive extruder. Ind. Eng. Chem. Res. 47(15), 5175–5181 (2008)

    Article  Google Scholar 

  106. Wallis, M.D., Bhatia, S.K.: Thermal degradation of high density polyethylene in a reactive extruder. Polym. Degrad. Stab. 92(9), 1721–1729 (2007)

    Article  Google Scholar 

  107. Miskolczi, N., Bartha, L., Deák, G., Jóver, B.: Thermal degradation of municipal plastic waste for production of fuel-like hydrocarbons. Polym. Degrad. Stab. 86(2), 357–366 (2004)

    Article  Google Scholar 

  108. Angyal, A., Miskolczi, N., Bartha, L.: Petrochemical feedstock by thermal cracking of plastic waste. J. Anal. Appl. Pyrol. 79(1–2), 409–414 (2007)

    Article  Google Scholar 

  109. Miskolczi, N., Bartha, L., Deák, G.: Thermal degradation of polyethylene and polystyrene from the packaging industry over different catalysts into fuel-like feed stocks. Polym. Degrad. Stab. 91(3), 517–526 (2006)

    Google Scholar 

  110. Angyal, A., Miskolczi, N., Bartha, L., Tungler, A., Nagy, L., Vida, L., Nagy, G.: Production of steam cracking feedstocks by mild cracking of plastic wastes. Fuel Process. Technol. 91(11), 1717–1724 (2010)

    Article  Google Scholar 

  111. Miskolczi, N., SÁGi, R., Bartha, L., Forcek, L.: Utilization of [alpha]-olefins obtained by pyrolysis of waste high density polyethylene to synthesize [alpha]-olefin-succinic-anhydride based cold flow improvers. J. Fuel Chem. Technol. 37(3), 302–310 (2009)

    Article  Google Scholar 

  112. Miskolczi, N., Angyal, A., Bartha, L., Valkai, I.: Fuels by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor. Fuel Process. Technol. 90(7–8), 1032–1040 (2009)

    Article  Google Scholar 

  113. Angyal, A., Miskolczi, N., Bartha, L., Valkai, I.: Catalytic cracking of polyethylene waste in horizontal tube reactor. Polym. Degrad. Stab. 94(10), 1678–1683 (2009)

    Article  Google Scholar 

  114. Dispons, J.: Continuous thermal process for cracking polyolefin wastes to produce hydrocarbons. In: Scheirs, J., Kaminsky, W. (eds.) Feedstock Recycling and Pyrolysis of Waste Plastics, pp. 595–604. Wiley, New York (2006)

    Chapter  Google Scholar 

  115. Oleszkiewicz, A.: Plastic power. Waste Manage. World 9(5) (2006)

  116. T-TechnologyTM: New generation system of plastic waste recycling. www.tokarz.pl (2007). Accessed 11 Feb 2010

  117. Ludlow-Palafox, C., Chase, H.A.: Microwave pyrolysis of plastic wastes. In: Scheirs, J., Kaminsky, W. (eds.) Feedstock Recycling and Pyrolysis of Waste Plastics, pp. 569–594. Wiley, New York (2006)

    Chapter  Google Scholar 

  118. Bilgesü, A.Y., Çetin Koçak, M., Karaduman, A.: Waste plastic pyrolysis in free-fall reactors. In: Scheirs, J., Kaminsky, W. (eds.) Feedstock Recycling and Pyrolysis of Waste Plastics, pp. 605–623. Wiley, New York (2006)

    Chapter  Google Scholar 

  119. Mastral, J.F., Berrueco, C., Ceamanos, J.: Pyrolysis of high-density polyethylene in free-fall reactors in series. Energy Fuels 20(4), 1365–1371 (2006)

    Article  Google Scholar 

  120. Mikulec, J., Vrbova, M.: Catalytic and thermal cracking of selected polyolefins. Clean Technol. Environ. Policy 10(2), 121–130 (2008)

    Article  Google Scholar 

  121. Converting waste plastic to crude oil. www.agilyx.com (2010). Accessed 1 Nov 2010

  122. http://www.roycobeijing.com/. Accessed 2 July 2010

  123. We Face the Future. www.alphakat.de. Accessed 20 July 2010

  124. http://www.reentech.co.kr. Accessed 18 Jun 2010

  125. Anon: Press release 08 Nov 2010- SITA UK, subsidary of SUEZ ENVIRONMENT, and Cynar Plc, sign a landmark recycling technology agreement for the conversion of end of life plastic (ELP) into diesel. http://www.sita.co.uk/news-and-views/press-releases/sita-uk-subsidiary-of-suez-environnement-and-cynar (2010). Accessed 04 Feb 2011

  126. Sing, S.: World takes note of Mumbai start-up’s waste-to-fuel tech. http://www.livemint.com/2007/11/14001417/World-takes-note-of-Mumbai-sta.html (2007). Accessed 2010/10/16

  127. Polymer Energy: Turning Waste into Energy (Company Brochure). Polymer Energy, Circle Pines (2010)

    Google Scholar 

  128. Encinar, J.M., González, J.F.: Pyrolysis of synthetic polymers and plastic wastes. Kinetic study. Fuel Process. Technol. 89(7), 678–686 (2008)

    Article  Google Scholar 

  129. Williams, P.T., Slaney, E.: Analysis of products from the pyrolysis and liquefaction of single plastics and waste plastic mixtures. Resour. Conserv. Recycl. 51(4), 754–769 (2007)

    Article  Google Scholar 

  130. Chowlu, A.C.K., Reddy, P.K., Ghoshal, A.K.: Pyrolytic decomposition and model-free kinetics analysis of mixture of polypropylene (PP) and low-density polyethylene (LDPE). Thermochimica Acta 485(1–2), 20–25 (2009)

    Article  Google Scholar 

  131. Hujuri, U., Ghoshal, A.K., Gumma, S.: Modeling pyrolysis kinetics of plastic mixtures. Polym. Degrad. Stab. 93(10), 1832–1837 (2008)

    Article  Google Scholar 

  132. Onwudili, J.A., Insura, N., Williams, P.T.: Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: effects of temperature and residence time. J. Anal. Appl. Pyrol. 86(2), 293–303 (2009)

    Article  Google Scholar 

  133. Siddiqui, M.N., Redhwi, H.H.: Pyrolysis of mixed plastics for the recovery of useful products. Fuel Process. Technol. 90(4), 545–552 (2009)

    Article  Google Scholar 

  134. Buah, W.K., Cunliffe, A.M., Williams, P.T.: Characterization of products from the pyrolysis of municipal solid waste. Process Saf. Environ. Prot. 85(5), 450–457 (2007)

    Article  Google Scholar 

  135. Koç, A., Bilgesü, A.Y.: Catalytic and thermal oxidative pyrolysis of LDPE in a continuous reactor system. J. Anal. Appl. Pyrol. 78(1), 7–13 (2007)

    Article  Google Scholar 

  136. Marcilla, A., Beltrán, M.I., Navarro, R.: Study of the deactivation process of HZSM5 zeolite during polyethylene pyrolysis. Appl. Catal. A General 333(1), 57–66 (2007)

    Article  Google Scholar 

  137. Marcilla, A., Gómez-Siurana, A., Valdés, F.J.: Influence of the temperature on the composition of the coke obtained in the catalytic cracking of low density polyethylene in the presence of USY and HZSM-5 zeolites. Microporous Mesoporous Mater. 109(1–3), 420–428 (2008)

    Article  Google Scholar 

  138. Obali, Z., Sezgi, N.A., Doğu, T.: Performance of acidic MCM-like aluminosilicate catalysts in pyrolysis of polypropylene. Chem. Eng. Commun. 196(1), 116–130 (2009)

    Article  Google Scholar 

  139. Agullo, J., Kumar, N., Berenguer, D., Kubicka, D., Marcilla, A., Gómez, A., Salmi, T., Murzin, D.: Catalytic pyrolysis of low density polyethylene over H-β, H-Y, H-Mordenite, and H-Ferrierite zeolite catalysts: Influence of acidity and structures. Kinetics Catal. 48(4), 535–540 (2007)

    Article  Google Scholar 

  140. Coelho, A., Fonseca, I.M., Matos, I., Marques, M.M., Botelho do Rego, A.M., Lemos, M.A.N.D.A., Lemos, F.: Catalytic degradation of low and high density polyethylenes using ethylene polymerization catalysts: kinetic studies using simultaneous TG/DSC analysis. Appl. Catal. A Gen. 374(1–2), 170–179 (2010)

    Article  Google Scholar 

  141. Aguado, J., Serrano, D.P., Miguel, G.S., Escola, J.M., Rodríguez, J.M.: Catalytic activity of zeolitic and mesostructured catalysts in the cracking of pure and waste polyolefins. J. Anal. Appl. Pyrol. 78(1), 153–161 (2007)

    Article  Google Scholar 

  142. Renzini, M.S., Sedran, U., Pierella, L.B.: H-ZSM-11 and Zn-ZSM-11 zeolites and their applications in the catalytic transformation of LDPE. J. Anal. Appl. Pyrol. 86(1), 215–220 (2009)

    Article  Google Scholar 

  143. Aguado, J., Serrano, D.P., Escola, J.M., Peral, A.: Catalytic cracking of polyethylene over zeolite mordenite with enhanced textural properties. J. Anal. Appl. Pyrol. 85(1–2), 352–358 (2009)

    Article  Google Scholar 

  144. Mosio-Mosiewski, J., Warzala, M., Morawski, I., Dobrzanski, T.: High-pressure catalytic and thermal cracking of polyethylene. Fuel Process. Technol. 88(4), 359–364 (2007)

    Article  Google Scholar 

  145. Rasul Jan, M., Shah, J., Gulab, H.: Degradation of waste high-density polyethylene into fuel oil using basic catalyst. Fuel 89(2), 474–480 (2010)

    Article  Google Scholar 

  146. Lee, K.-H.: Thermal and catalytic degradation of pyrolytic oil from pyrolysis of municipal plastic wastes. J. Anal. Appl. Pyrol. 85(1–2), 372–379 (2009)

    Article  Google Scholar 

  147. Gulab, H., Jan, M.R., Shah, J., Manos, G.: Plastic catalytic pyrolysis to fuels as tertiary polymer recycling method: Effect of process conditions. J. Environ. Sci. Health A Toxic/Hazard Subst. Environ. Eng. 45(7), 908–915 (2009)

    Article  Google Scholar 

  148. Park, H.J., Park, Y.-K., Dong, J.-I., Jeon, J.-K., Yim, J.-H., Jeong, K.-E.: Catalytic degradation of polyethylene over ferrierite. Res. Chem. Intermed. 34, 727–735 (2008)

    Article  Google Scholar 

  149. Lee, Y.J., Kim, J.-H., Kim, S.H., Hong, S.B., Seo, G.: Nanocrystalline beta zeolite: an efficient solid acid catalyst for the liquid-phase degradation of high-density polyethylene. Appl. Catal. B Environ. 83(1–2), 160–167 (2008)

    Article  Google Scholar 

  150. Lee, K.H.: Composition of aromatic products in the catalytic degradation of the mixture of waste polystyrene and high-density polyethylene using spent FCC catalyst. Polym. Degrad. Stab. 93(7), 1284–1289 (2008)

    Article  Google Scholar 

  151. Achilias, D.S., Roupakias, C., Megalokonomos, P., Lappas, A.A., Antonakou, V.: Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). J. Hazard. Mater. 149(3), 536–542 (2007)

    Article  Google Scholar 

  152. Marcilla, A., Gómez-Siurana, A., Berenguer, D.: Study of the influence of the characteristics of different acid solids in the catalytic pyrolysis of different polymers. Appl. Catal. A Gen. 301(2), 222–231 (2006)

    Article  Google Scholar 

  153. Aguado, J., Serrano, D.P., San Miguel, G., Castro, M.C., Madrid, S.: Feedstock recycling of polyethylene in a two-step thermo-catalytic reaction system. J. Anal. Appl. Pyrol. 79(1–2), 415–423 (2007)

    Article  Google Scholar 

  154. San Miguel, G., Serrano, D.P., Aguado, J.: Valorization of waste agricultural polyethylene film by sequential pyrolysis and catalytic reforming. Ind. Eng. Chem. Res. 48(18), 8697–8703 (2009)

    Article  Google Scholar 

  155. Miskolczi, N., Bartha, L.: Investigation of hydrocarbon fractions form waste plastic recycling by FTIR, GC, EDXRFS and SEC techniques. J. Biochem. Biophys. Methods 70(6), 1247–1253 (2008)

    Article  Google Scholar 

  156. Zorriqueta, I.-J.N.: Pyrolysis of Polypropylene by Ziegler Natta Catalysts. University of Hamburg, Hamburg (2006)

    Google Scholar 

  157. del Remedio Hernández, M., García, Á.N., Marcilla, A.: Catalytic flash pyrolysis of HDPE in a fluidized bed reactor for recovery of fuel-like hydrocarbons. J. Anal. Appl. Pyrol. 78(2), 272–281 (2007)

    Article  Google Scholar 

  158. Lin, Y.H., Yang, M.H.: Tertiary recycling of polyethylene waste by fluidised-bed reactions in the presence of various cracking catalysts. J. Anal. Appl. Pyrol. 83(1), 101–109 (2008)

    Article  Google Scholar 

  159. Lin, Y.H., Yang, M.H., Wei, T.T., Hsu, C.T., Wu, K.J., Lee, S.L.: Acid-catalyzed conversion of chlorinated plastic waste into valuable hydrocarbons over post-use commercial FCC catalysts. J. Anal. Appl. Pyrol. 87(1), 154–162 (2010)

    Article  Google Scholar 

  160. Yang, M.H., Lin, Y.H.: Catalytic conversion of postconsumer PE/PP waste into hydrocarbons using the FCC process with an equilibrium FCC commercial catalyst. J. Appl. Polym. Sci. 114(1), 193–203 (2009)

    Article  Google Scholar 

  161. Lin, Y.-H.: Production of valuable hydrocarbons by catalytic degradation of a mixture of post-consumer plastic waste in a fluidized-bed reactor. Polym. Degrad. Stab. 94(11), 1924–1931 (2009)

    Article  Google Scholar 

  162. Lin, Y.H., Yang, M.H.: Tertiary recycling of commingled polymer waste over commercial FCC equilibrium catalysts for producing hydrocarbons. Polym. Degrad. Stab. 94(1), 25–33 (2009)

    Article  Google Scholar 

  163. Lin, Y.H., Yang, M.H.: Chemical catalysed recycling of waste polymers: Catalytic conversion of polypropylene into fuels and chemicals over spent FCC catalyst in a fluidised-bed reactor. Polym. Degrad. Stab. 92(5), 813–821 (2007)

    Article  Google Scholar 

  164. Lin, Y.H., Yang, M.H.: Catalytic pyrolysis of polyolefin waste into valuable hydrocarbons over reused catalyst from refinery FCC units. Appl. Catal. A Gen. 328(2), 132–139 (2007)

    Article  Google Scholar 

  165. Salmiaton, A., Garforth, A.: Waste catalysts for waste polymer. Waste Manage. 27(12), 1891–1896 (2007)

    Article  Google Scholar 

  166. Marcilla, A., Hernández, M.D.R., García, Á.N.: Study of the polymer-catalyst contact effectivity and the heating rate influence on the HDPE pyrolysis. J. Anal. Appl. Pyrol. 79(1–2), 424–432 (2007)

    Article  Google Scholar 

  167. Marcilla, A., Beltrán, M.I., Navarro, R.: Evolution of products during the degradation of polyethylene in a batch reactor. J. Anal. Appl. Pyrol. 86(1), 14–21 (2009)

    Article  Google Scholar 

  168. Ju Park, H., Yim, J.-H., Jeon, J.-K., Man Kim, J., Yoo, K.-S., Park, Y.-K.: Pyrolysis of polypropylene over mesoporous MCM-48 material. J. Phys. Chem. Solids 69(5–6), 1125–1128 (2008)

    Article  Google Scholar 

  169. Marcilla, A., Beltrán, M.I., Navarro, R.: Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions. Appl. Catal. B Environ. 86(1–2), 78–86 (2009)

    Article  Google Scholar 

  170. Marcilla, A., Gómez-Siurana, A., Odjo, A.O., Navarro, R., Berenguer, D.: Characterization of vacuum gas oil-low density polyethylene blends by thermogravimetric analysis. Polym. Degrad. Stab. 93(3), 723–730 (2008)

    Article  Google Scholar 

  171. Mominou, N., Xian, S.B., Jiaoliang, X.: Studies on coprocessing vacuum residue oil with plastics using thermogravimetric analysis. Pet. Sci. Technol. 27(6), 588–596 (2009)

    Article  Google Scholar 

  172. Marcilla, A., Hernández, M.D.R., García, Á.N.: Degradation of LDPE/VGO mixtures to fuels using a FCC equilibrium catalyst in a sand fluidized bed reactor. Appl. Catal. A Gen. 341(1–2), 181–191 (2008)

    Article  Google Scholar 

  173. Torre, I., Arandes, J., Castano, P., Azkoiti, M., Bilbao, J., de Lasa, H.: Catalytic cracking of plastic pyrolysis waxes with vacuum gasoil: effect of HZSM-5 zeolite in the FCC catalyst. Int. J. Chem. Reactor Eng. 4, 19 (2006)

    Google Scholar 

  174. Arandes, J.M., Azkoiti, M.J., Torre, I., Olazar, M., Castaño, P.: Effect of HZSM-5 catalyst addition on the cracking of polyolefin pyrolysis waxes under FCC conditions. Chem. Eng. J. 132(1–3), 17–26 (2007)

    Article  Google Scholar 

  175. Arandes, J.M., Torre, I., Azkoiti, M.J., Castaño, P., Bilbao, J., de Lasa, H.: Effect of catalyst properties on the cracking of polypropylene pyrolysis waxes under FCC conditions. Catal. Today 133–135, 413–419 (2008)

    Article  Google Scholar 

  176. Arandes, J.M., Torre, I., Castaño, P., Olazar, M., Bilbao, J.: Catalytic cracking of waxes produced by the fast pyrolysis of polyolefins. Energy Fuels 21(2), 561–569 (2007)

    Article  Google Scholar 

  177. Hájeková, E., Mlynková, B., Bajus, M., Spodová, L.: Copyrolysis of naphtha with polyalkene cracking products; the influence of polyalkene mixtures composition on product distribution. J. Anal. Appl. Pyrol. 79(1–2), 196–204 (2007)

    Article  Google Scholar 

  178. Tiikma, L., Tamvelius, H., Luik, L.: Coprocessing of heavy shale oil with polyethylene waste. J. Anal. Appl. Pyrol. 79(1–2), 191–195 (2007)

    Article  Google Scholar 

  179. Siddiqui, M.N., Redhwi, H.H.: Catalytic coprocessing of waste plastics and petroleum residue into liquid fuel oils. J. Anal. Appl. Pyrol. 86(1), 141–147 (2009)

    Article  Google Scholar 

  180. Ali, M.F., Nahid, M., Redhwi, S.S.H.H.: Study on the conversion of waste plastics/petroleum resid mixtures to transportation fuels. J. Mater. Cycles Waste Manage. 6(1), 27–34 (2004)

    Article  Google Scholar 

  181. Demirbas, A.: Recovery of chemicals and gasoline-range fuels from plastic wastes via pyrolysis. Energy Sourc. 27(14), 1313–1319 (2005)

    Article  Google Scholar 

  182. Demirbas, A.: Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons. J. Anal. Appl. Pyrol. 72(1), 97–102 (2004)

    Article  Google Scholar 

  183. Al-Salem, S.M., Lettieri, P.: Kinetic study of high density polyethylene (HDPE) pyrolysis. Chem. Eng. Res. Des. 88(12), 1599–1606 (2010)

    Article  Google Scholar 

  184. ICIS: Indicative Chemical Prices A-Z. http://www.icis.com/StaticPages/a-e.htm (2011). Accessed 3 Feb 2011

Download references

Acknowledgments

This study was funded under the Charles Parsons Energy Research Program (Grant Number Grant Number 6C/CP/E001) of Science Foundation Ireland (SFI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Butler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, E., Devlin, G. & McDonnell, K. Waste Polyolefins to Liquid Fuels via Pyrolysis: Review of Commercial State-of-the-Art and Recent Laboratory Research. Waste Biomass Valor 2, 227–255 (2011). https://doi.org/10.1007/s12649-011-9067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-011-9067-5

Keywords

Navigation