Skip to main content
Log in

Recent advancements in thermolysis of plastic solid wastes to liquid fuel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Presently, plastics are among materials showcasing the fastest growth rate in domestic and industrial usage due to their versatile range of applications garnered from their flexibility and relatively cheaper rate. Due to their short shelf-life, increasing difficulty in disposal, legislative constraints and escalating costs, loads of plastics waste stream have found their way to the environment, thereby causing serious health and environmental challenges. These have necessitated increasing need for alternative disposal routes. Recent progress in the development of green biodegradable polymers has not been able to fill the vast demand for plastics, thereby still prompting utilization of petroleum-based polymers in various applications. However, plastics recycling has continued to evolve through use of a wide variety of recent and established technologies including energy value recovery via waste-to-energy incineration, use of processed fuel, source minimization and reuse. Nevertheless, aforementioned alternatives have demonstrated potentials to conserve natural resources, while also minimizing wastes. On the other hand, production of liquified fuel has shown potential as better alternative because the plastics calorific value is about 40 MJ kg−1, and proximately close to the calorific number of fuels. Numerous researches across the globe have taken place on chemically recycling plastics solid wastes to the monomer, in addition to fuel. Hence, the present paper elucidates recently emerging trends in wastes plastics thermolysis to liquid fuel.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eurostat F, Union E, Regulation WS. Municipal waste statistics. Proposal for a decision of the European parliament and of the council on a General Union Environment Action Programme to 2020. 2017; 7100337: 2012.https://doi.org/10.2785/408702.

  2. European Environment Agency. Managing municipal solid waste—a review of achieve-ments in 32 European counties. 2013. https://doi.org/10.2800/71424.

  3. Sharuddin S, et al. Pyrolysis of plastic waste for liquid fuel production as prospective energy resource. IOP Conf Ser Mater Sci Eng. 2018;334:012001.

    Article  Google Scholar 

  4. Ali M, Qureshi M. Transportation fuels from catalytic co-pyrolysis of plastic wastes with petroleum residues: evaluation of catalysts by thermogravimetric analysis. Pet Sci Technol. 2013;31:1665–73.

    Article  CAS  Google Scholar 

  5. Rajasekhar B, Vinu R. Feedstock characterization for pyrolysis and gasification. In: De S, Agarwal A, Moholkar V, Thallada B, editors. Coal and biomass gasification. Energy environment and sustainability. Singapore: Springer; 2018.

    Google Scholar 

  6. Ratnasari D, Nahil M, Williams P. Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils. J Anal Appl Pyrol. 2017;124:631–7.

    Article  CAS  Google Scholar 

  7. Wu S, Wang Q, Bian M, Zhu J, Long F. Influence of iron ore characteristics on FeO formation during sintering. J Iron Steel Res Int. 2011;18:5–10.

    Article  CAS  Google Scholar 

  8. Benedetti M, Cafiero L, de Angelis D, et al. Front. Pyrolysis of WEEE plastics us-ing catalysts produced from fly ash of coal gasification. Environ Sci Eng. 2017;11:11.

    Google Scholar 

  9. Syamsiro M, Saptoadi H, Norsujianto T, Noviasri P, Cheng S, Alimuddin Z, Yoshikawa K. Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactor. Energy Procedia. 2014;12:180–8.

    Article  Google Scholar 

  10. Kumar S, Bharathikumar M, Prabhakaran C, Vijayan S, Ramakrishnan K. Conversion of waste plastics into low-emissive hydrocarbon fuels through catalytic depolymerization in a new laboratory scale batch reactor. Int J Energy Environ Eng. 2017;8:167.

    Article  Google Scholar 

  11. Palza H, Aravena C, Colet M. Role of the catalyst in the pyrolysis of polyolefin mixtures and used tires. Energy Fuels. 2017;31:3111–20.

    Article  CAS  Google Scholar 

  12. Chandrasekaran S, Kunwar B, Moser B, Rajagopalan N, Sharma B. Catalytic thermal cracking of postconsumer waste plastics to fuels. Kinetics and optimization. Energy Fuels. 2017;29:6068–77.

    Article  Google Scholar 

  13. Aguado J, Serrano D, Escola J. Fuels from waste plastics by thermal and catalytic processes: a review. Ind Eng Chem Res. 2008;47:7982–92.

    Article  CAS  Google Scholar 

  14. Özsin G, Pütün A. Co-pyrolytic behaviors of biomass and polystyrene: kinetics, thermodynamics and evolved gas analysis. Korean J Chem Eng. 2018;35:428.

    Article  Google Scholar 

  15. Pek K, Ghosh K. Effect of binary mixture of waste plastics on the thermal behavior of pyrolysis process. Environ Prog Sustain Energy. 2015;34:1113–9.

    Article  CAS  Google Scholar 

  16. Czajczyaska D, Anguilano L, Ghazal H, Krzyayaska R, Reynolds A, Spencer N, Jouhara H. Potential of pyrolysis processes in the waste management sector. Therm Sci Eng Prog. 2017;3:171–97.

    Article  Google Scholar 

  17. Kaimal K, Vijayabalan P. Study on synthesis of energy fuel from waste plastic and assessment of its potential as an alternative fuel for diesel engines. Waste Manag. 2016;51:91–6.

    Article  CAS  PubMed  Google Scholar 

  18. Hoornweg D, Bhada-Tata, P. What a waste—a global review of solid waste management. World Bank Urban Development Series Knowledge Papers 2012. Available online: www.worldbank.org/urban, https://doi.org/10.1088/1757-899X/149/1/012223. Accessed 3 Jan 2020.

  19. Czajczyaska D, Nannou T, Anguilano L, Krzyayaska R, Ghazal H, Spencer N, Jouhara H. Potentials of pyrolysis processes in the waste management sector. Energy Procedia. 2018;123:387–94.

    Article  Google Scholar 

  20. Velghe I, Carleer R, Yperman J, Schreurs S. Study of the pyrolysis of municipal solid waste for the production of valuable products. J Anal Appl Pyrol. 2011;92:366–75.

    Article  CAS  Google Scholar 

  21. Escola J, Aguado J, Serrano D, Briones L, Tuesta J, Calvo R, Fernandez E. Conversion of polyethylene into transportation fuels by the combination of thermal cracking and catalytic hydroreforming over Ni-Supported hierarchical beta zeolite. Energy Fuels. 2012;26:3187–95.

    Article  CAS  Google Scholar 

  22. Pramendra G, Hiralal P. Studies on pyrolysis of plastic wastes polyethylene to valuable hydrocarbons to minimize plastic wastes load to environment. 2013; 10:13140.

  23. Passamonti FJ, Sedran U. Recycling of waste plastics into fuels. LDPE conversion in FCC. Appl Catal B Environ. 2012;125:499–506.

    Article  CAS  Google Scholar 

  24. Akpanudoh NS, Gobin K, Manos G. Catalytic degradation of plastic waste to liquid fuel over commercial cracking catalysts: effect of polymer to catalyst ratio/acidity content. J Mol Catal A Chem. 2005;235:67–73.

    Article  CAS  Google Scholar 

  25. Sharma BK, Moser BR, Vermillion KL, Doll KM, Rajagopalan N. Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags. Fuel Process Technol. 2014;122:79–90.

    Article  CAS  Google Scholar 

  26. Kaimal VK, Vijayabalan P. A study on synthesis of energy fuel from waste plastic and assessment of its potential as an alternative fuel for diesel engines. Waste Manag. 2016;51:91–6.

    Article  CAS  PubMed  Google Scholar 

  27. Kyaw KT, Hmwe CSS. Effect of various catalysts on fuel oil oyrolysis process of mixed plastics wastes. Int J Adv Eng Technol. 2015;8:794.

    Google Scholar 

  28. Kalargaris I, Tian G, Gu S. The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine. Energy. 2017;131:179–85.

    Article  CAS  Google Scholar 

  29. Ratnasari K, Nahil M, Williams P. Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils. J Anal Appl Pyrolysis. 2017;124:631–7.

    Article  CAS  Google Scholar 

  30. Murugan S, Ramaswamy M, Nagarajan G. Assessment of pyrolysis oil as an energy source for diesel engines. Fuel Process Technol. 2009;90:67–74.

    Article  CAS  Google Scholar 

  31. Kumar S, Singh RK. Thermolysis of high-density polyethylene to petroleum products. J Pet Eng. 2013;201:1–7.

    Google Scholar 

  32. Ayanoglu A, Yumrutas R. Production of gasoline and diesel like fuels from waste tire oil by using catalytic pyrolysis. Energy. 2016;103:456–68.

    Article  CAS  Google Scholar 

  33. Kalargari S, Tian G. Combustion, performance and emission analysis of a DI diesel engine using plastic pyrolysis oil. Fuel Process Technol. 2017;157:108–15.

    Article  Google Scholar 

  34. Kunwar B, Moser B, Chandrasekaran S, Rajagopalan N, Sharma B. Catalytic and thermal depolymerization of low value post-consumer high density polyethylene plastic. Energy. 2016;111:884–92.

    Article  CAS  Google Scholar 

  35. Kaimal VK, Vijayabalan P. A study on synthesis of energy fuel from wasteplastic and assessment of its potential as an alternative fuel for diesel engines. Waste Manag. 2016;51:916.

    Article  Google Scholar 

  36. Arabiourrutia M, Elordi G, Lopez G, Borsella E, Bilbao J, Olazar M. Characterisation of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor. J Anal Appl Pyrol. 2012;94:230–7.

    Article  CAS  Google Scholar 

  37. Marcilla A, Garcia-Quesada JC, Sanchez S, Ruiz R. Study of the catalytic pyrolysis behavior of polyethylene-polypropylene mixtures. J Anal Appl Pyrol. 2005;74:387–92.

    Article  CAS  Google Scholar 

  38. Bhaskar T, Kaneko J, Muto A, Sakata Y, Jakab E, Matsui T, et al. Pyrolysis studies of PP/PE/PS/PVC/HIPS-Br plastics mixed with PET and dehalogenation (Br, Cl) of the liquid products. J Anal Appl Pyrol. 2004;272:27–33.

    Article  Google Scholar 

  39. Lee KH, Shin DH, Seo YH. Liquid-phase catalytic degradation of mixtures of waste high-density polyethylene and polystyrene over spent FCC catalyst. Effect of mixing proportions of reactants. Polym Degrad Stab. 2004;84:123–7.

    Article  CAS  Google Scholar 

  40. Pohjakallio M. Chapter 18—secondary plastic products—examples and market trends. In: Letcher TM, editor. Plastic waste and recycling. Academic Press; 2020. p. 467–79.

    Chapter  Google Scholar 

  41. Okuwaki A, Yoshioka T. The liquefaction of plastic containers and packaging in Japan. In: Feedstock recycling and pyrolysis of waste plastics: converting waste plastics into diesel and other fuels. Edithvale: Wiley; 2006. p. 663–708.

    Chapter  Google Scholar 

  42. Lei J, Yuan G, Weerachanchai P, Lee S, Li K, Wang J, Yang Y. Investigation on thermal dechlorination and catalytic pyrolysis in a continuous process for liquid fuel recovery from mixed plastic wastes. J Mater Cycles Waste Manag. 2018;20:137–46.

    Article  CAS  Google Scholar 

  43. Rajendran K, Chintala V, Sharma A, Pal S, Pandey J, Ghodke P. Review of catalyst materials in achieving the liquid hydrocarbon fuels from municipal mixed plastic waste (MMPW). Mater Today Commun. 2020;24:100982.

    Article  Google Scholar 

  44. Pohjakallio M, Vuorinen T. Chapter 13—hemical routes for recycling—dissolving catalytic and thermochemical technologies. In: Letcher TM, editor. Plastic Waste and Recycling. Amsterdam: Academic Press; 2020. p. 359–84.

    Chapter  Google Scholar 

  45. Journal RSS feedSign up for new issue notificationsCVM. PVC feedstock recycling in Europe: an overview of processes and recent developments. ECVM; 1997.

  46. EEC. AR.5 recycling plastic waste: recommendation action. Oregon StateUniversity, Technical Report. 2009.

  47. EPIC. Environmental and plastics industry council, management of plastics in EOL electronics. Special News and Views Report. 2003.

  48. Franco C, Pinto F, Gulyurtlu I, Cabrita I. The study of reactions influencingthe biomass gasification process. Fuel. 2003;82:835–42.

    Article  CAS  Google Scholar 

  49. Frisch KC. Advances in plastic recycling, vol. 1. Amsterdam: Technomic Publishing; 1999.

    Google Scholar 

  50. Frisch KC, Klemper D. Advances in plastic recycling, vol. 2. Amsterdam: Technomic Publishing; 2001.

    Google Scholar 

  51. Buekens A. Introduction to feedstock recycling of plastics. In: Scheirs J, Kaminsky W, Orgs. Feedstock recycling and pyrolysis of waste plastics. Hoboken: Wiley; 2006. pp. 3–42.

  52. Lin H, Yang H. Tertiary recycling of polyethylene waste by fluidized-bed reactions in the presence of various cracking catalysts. J Anal Appl Pyrol. 2008;83:101–9.

    Article  CAS  Google Scholar 

  53. Zheng J, Jin Q, Chi Y, Wen M, Jiang G, Ni J. Pyrolysis characteristics of organic components of municipal solid waste at high heating rates. Waste Manag. 2009;29:1089–94.

    Article  CAS  PubMed  Google Scholar 

  54. Luo S, Xiao B, Hu Z, Liu S. Effect of particle size on pyrolysis of singlecomponent municipal solid waste in fixed bed reactor. Int J Hydrog Energy. 2010;35:93–7.

    Article  CAS  Google Scholar 

  55. Williams EA, Williams PT. The pyrolysis of individual plastics and a plastic mixture in a fixed bed reactor. J Chem Technol Biotechnol. 1997;70:9–20.

    Article  CAS  Google Scholar 

  56. Williams PT, Williams EA. Interaction of plastics in mixed-plastics pyrolysis. Energy Fuels. 1999;13:188–96.

    Article  CAS  Google Scholar 

  57. Park W, Hwang Y, Kim R, Choi K, Kim A, Woo HC. Catalytic degradation of polyethylene oversolid acid catalysts. Polym Degrad Stab. 1999;65:193–8.

    Article  CAS  Google Scholar 

  58. Mastral JF, Berrueco C, Ceamanos J. Theoretical prediction of product distribution of the pyrolysis of high-density polyethylene. J Anal Appl Pyrol. 2007;80:427–38.

    Article  CAS  Google Scholar 

  59. Abbas-Abadi MS, Haghighi MN, Yeganeh H. The effect of temperature, catalyst, different carrier gases and stirrer on the produced transportation hydrocarbons of LLDPE degradation in a stirred reactor. J Anal Appl Pyrol. 2012;95:198–204.

    Article  CAS  Google Scholar 

  60. Arabiourrutia M, Elordi G, Lopez G, Borsella E, Bilbao J, Olazar M. Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor. J Anal Appl Pyrolysis. 2012;94:230–7.

    Article  CAS  Google Scholar 

  61. Coelho A, Costa L, Marques M, Fonseca M, Lemos A, Lemos F. The effect of ZSM-5 zeolite acidity on the catalytic degradation of highdensity polyethylene using simultaneous DSC/TG analysis. Appl Catal A. 2012;413–414:183–91.

    Article  Google Scholar 

  62. Abbas-Abadi MS, Haghighi MN, Yeganeh H. Evaluation of pyrolysis products of virgin high-densitypolyethylene degradation using different process parametersin a stirred reactor. Fuel Process Technol. 2013;109:90–5.

    Article  CAS  Google Scholar 

  63. Stelmachowski M. Thermal conversion of wastepolyolefins to the mixture by hydrocarbons in the reactor withmolten metal bed. Energy Convers Manag. 2010;51:2016–20.

    Article  CAS  Google Scholar 

  64. Miskolczi N, Nagy R. Hydrocarbons obtained bywaste plastic pyrolysis: comparative analysis of decompositiondescribed by different kinetic models. Fuel Process Technol. 2012;104:96–104.

    Article  CAS  Google Scholar 

  65. Demirbas A. Pyrolysis of municipal of plastic wastesfor recovery of gasoline-range hydrocarbons. J Anal Appl Pyrolysis. 2004;72:97–102.

    Article  CAS  Google Scholar 

  66. Valle M, Guimarães C, Sampaio S. Degradação de poliolefinasutilizandocatalisadoreszeólitas. Polímeros: Ciência e Tecnologia. 2004;1:17–21.

    Article  Google Scholar 

  67. Shah H, Khan M, Raja A, Mahmood Q, Bhatti A, Khan J, Farooq A, Rashid N, Wu D. Low temperature conversion of plastic waste into light hydrocarbons. J Hazard Mater. 2010;179:15–20.

    Article  CAS  PubMed  Google Scholar 

  68. Panda AK, Singh RK, Mishra DK. Thermolysisof waste plastics to liquid fuel. A suitable method for plasticwaste management and manufacture of value-added products: aworld prospective. Renew Sustain Energy Rev. 2010;14:233–48.

    Article  CAS  Google Scholar 

  69. Manos G, Isman Y, Papayannakos YN, Gangas NH. Catalytic cracking of polyethylene over clay catalysts. Comparison with an ultrastable Y Zeolite. Ind Eng Chem Res. 2001;40:2220–5.

    Article  CAS  Google Scholar 

  70. Sushil S, Batra VS. Catalytic applications of red mud, an aluminiumindustry waste: a review. Appl Catal Environ. 2008;81:64–77.

    Article  CAS  Google Scholar 

  71. Murayama N, Okajima N, Yamaoka S, Yamamoto H, Shibata J. Hydrothermal synthesis of AlPO 4–5 type zeolitic materials byusing aluminum dross as a raw material. J Eur Ceram Soc. 2006;26:459–62.

    Article  CAS  Google Scholar 

  72. Dayana S, Sharuddin A, Abnisa F, Daud W, Aroua M. Energy recovery from pyrolysis of plastic waste: Study on non-recycled plastics (NRP) data as the real measure of plastic waste. Energy Convers Manag. 2017;148:925–34.

    Article  Google Scholar 

  73. Kelkar S, Saffron CM, Andreassi K, Li Z, Murkute A, Miller DJ. A survey of catalysts for aromatics from fast pyrolysis of biomass. Appl Catal Environ. 2015;174:85–95.

    Article  Google Scholar 

  74. Kumar S, Singh R. Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis. Braz J Chem Eng. 2011;28(4):559–667.

    Article  Google Scholar 

  75. Liu HB, Guo ZY, Hui HL, et al. Characteristics and kinetics of the pyrolysis of coke-tailings. J Saf Environ. 2012;12:77–81 (in Chinese).

    CAS  Google Scholar 

  76. Lin YH, Yang MH. Catalytic conversion of commingled polymer waste into chemicals and fuels over spent FCC commercial catalyst in a fluidised-bed reactor. Appl Catal Environ. 2007;69:145–53.

    Article  CAS  Google Scholar 

  77. López A, Marco ID, Caballero BM, Laresgoiti MF, Adrados A, Aranzabal A. Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and red mud. Appl Catal Environ. 2011;104:211–9.

    Article  Google Scholar 

  78. Liu HZ, Chen HW, Zhang ZL, Fan DZ. Fly ash catalytic pyrolysis of waste polypropylene plastics. Environ Prot Chem Indus. 2010;30:336–9 (in Chinese).

    Google Scholar 

  79. ASTM D883–17. Standard terminology relating to plastics, ASTM International, West Conshohocken, PA; 2017. www.astm.org.

  80. Suresh S, Bonda S, Mohanty S, Nayak S. A review on computer waste with its special insight to toxic elements, segregation and recycling techniques. Process Saf Environ Prot. 2018;116:477–93.

    Article  CAS  Google Scholar 

  81. Al-Salem M, Antelava A, Constantinou A, Manos G, Dutta A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J Environ Manag. 2017;197:177–98.

    Article  CAS  Google Scholar 

  82. Subramanian K, Yung W. Review of life cycle assessment on consumer electronic products: Developments and the way ahead. Crit Rev Environ Sci Technol. 2016;46:1441–97.

    Article  Google Scholar 

  83. Sharuddin S, Abnisa F, Daud W, Aroua M. A review on pyrolysis of plastic wastes. Energy Convers Manag. 2016;115:308–26.

    Article  Google Scholar 

  84. Assis G, Skovroinski E, Leite V, Rodrigues M, Galembeck A, Alves M, Eastoe J, Oliveira R. Conversion of “Waste Plastic” into photocatalytic nanofoams for environmental remediation. ACS Appl Mater Interfaces. 2018;10:8077–85.

    Article  PubMed  Google Scholar 

  85. Scarlat N, Dallemand J, Fahl F. Biogas: developments and perspectives in Europe. Renew Energy. 2018;129:457–72.

    Article  Google Scholar 

  86. Lee T, Oh J, Baek K, Tsang Y, Kim K, Kwon E. Compositional modification of pyrogenic products using CaCO3 and CO2 from the thermolysis of polyvinyl chloride (PVC). Green Chem. 2018;20:1583–93.

    Article  CAS  Google Scholar 

  87. Park K, Oh S, Begum G, Kim J. Production of clean oil with low levels of chlorine and olefins in a continuous two-stage pyrolysis of a mixture of waste low-density polyethylene and polyvinyl chloride. Energy. 2018;157:402–11.

    Article  CAS  Google Scholar 

  88. Wong L, Ngadi N, Abdullah T, Inuwa M. Current state and future prospects of plastic waste as source of fuel: a review. Renew Sustain Energy Rev. 2015;50:1167–80.

    Article  CAS  Google Scholar 

  89. Vargas Santillán A, Farias Sanchez J, Pineda Pimentel M, et al. Olefins and ethanol from polyolefins: analysis of potential chemical recycling of poly (ethylene) Mexican case. Int J Chem Reactor Eng. 2016;14:1289–300.

    Article  Google Scholar 

  90. Thahir R, Altway A, Juliastuti SR. Production of liquid fuel from plastic waste using integrated pyrolysis method with refinery distillation bubble cap plate column. Energy Rep. 2019;5:70–7.

    Article  Google Scholar 

  91. Parthasarathy V, Dhanalakshmi V, Anbarasan R. Thermal, melting and crystallinity behavior of esters grafted LDPE by thermolysis method. Int J Plast Technol. 2013;17:61–74.

    Article  CAS  Google Scholar 

  92. Kulkarni GS. Introduction to polymer and their recycling techniques. In: Thomas S, Rane AV, Kanny K, Abitha VK, Thomas MG, editors. Plastics design library recycling of polyurethane foams. William Andrew Publishing; 2018. p. 1–16.

    Google Scholar 

  93. Szałatkiewicz J. Thermolysis parameters measurements of tetra pakwaste packages in high temperatures. In: Szewczyk R, Zieliński C, Kaliczyńska M, editors. Automation. Springer; 2018.

    Google Scholar 

  94. Sági D, Solymosi P, Holló A, Varga Z, Hancsók J. Waste polypropylene and waste cooking oil as feedstocks for an alternative component containing diesel fuel production. Energy Fuels. 2018;32:3519–25.

    Article  Google Scholar 

  95. Owusu P, Banadda N, Zziwa A, Seay J, Kiggundu N. Reverse engineering of plastic waste into useful fuel products. J Anal Appl Pyrol. 2018;130:285–93.

    Article  CAS  Google Scholar 

  96. Das P, Tiwari P. Valorization of packaging plastic waste by slow pyrolysis. Resour Conserv Recycl. 2018;128:69–77.

    Article  Google Scholar 

  97. Block C, Ephraim A, Weiss-Hortala E, Minh D, Nzihou A, et al. Copyrogasification of plastics and biomass: a review. Waste Biomass Valor. 2019;10(3):483–509.

    Article  CAS  Google Scholar 

  98. Al-Salem M, Lettieri P, Baeyens J. Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag. 2009;29:2625–43.

    Article  CAS  PubMed  Google Scholar 

  99. Murali D, Rajagopalan N, Sharma B. Materials and energy recovery from E-waste plastics. ACS Sustain Chem Eng. 2018;6:4594–602.

    Article  Google Scholar 

  100. Shen Y, Chen X, Ge X, Chen M. Chemical pyrolysis of E-waste plastics: char characterization. J Environ Manag. 2018;214:94–103.

    Article  CAS  Google Scholar 

  101. Adrados A, de Marco I, Caballero B, Lãpez A, Laresgoiti M, Torres A. Pyrolysis of plastic packaging waste: a comparison of plastic residuals from material recovery facilities with simulated plastic waste. Waste Manag. 2012;32:826–32.

    Article  CAS  PubMed  Google Scholar 

  102. Singh R, Ruj B. Time and temperature depended fuel gas generation from pyrolysis of real-world municipal plastic waste. Fuel. 2016;174:164–71.

    Article  CAS  Google Scholar 

  103. Al-Salem SM, Lettieri P, Baeyens J. The valorization of plastic solid waste (PSW) by primary to quaternary routes: from re-use to energy and chemicals. Prog Energy Combust Sci. 2010;36:103–29.

    Article  CAS  Google Scholar 

  104. PlasticsEurope, Plastics - the facts 2019, Analysis of European latest plastics production, demand and waste data. https://www.plasticseurope.org.

  105. Panda A, Singh R. Conversion of waste polypropylene to liquid fuel using acid-activated kaolin. Waste Manag Res. 2018;32:997–1004.

    Article  Google Scholar 

  106. Kataki R, et al. Waste valorization to fuel and chemicals through pyrolysis: technology, feedstock, products, and economic analysis. In: Singhania R, Agarwal R, Kumar R, Sukumaran R, editors., et al., Waste to wealth. Energy environment, and sustainability. Singapore: Springer; 2018.

    Google Scholar 

  107. PlasticsEurope, Plastics - the facts 2020. Analysis of European latest plastics production, demand and waste data. https://www.plasticseurope.org.

  108. Tian J, Ni L, Song T, Olson J, Zhao J. An overview of operating parameters and conditions in hydrocyclones for enhanced separations. Sep Purif Technol. 2018;206:268–85.

    Article  CAS  Google Scholar 

  109. Lungu M. Electrical separation of plastic materials using the triboelectric effect. Miner Eng. 2004;17:69–75.

    Article  CAS  Google Scholar 

  110. Brar L, Elsayed K. Analysis and optimization of cyclone separators with eccentric vortex finders using large eddy simulation and artificial neural network. Sep Purif Technol. 2018;207:269–83.

    Article  CAS  Google Scholar 

  111. Kang HY, Schoenung JM. Electronic waste recycling: a review of US infrastructure and technology options. Resour Conserv Recycl. 2005;45:368–400.

    Article  Google Scholar 

  112. US EPA. Advancing sustainable materials management: 2014 Fact Sheet. United States Environmental Protection Agency (US EPA); 2016.

  113. Kunwar B, Cheng H, Chandrashekaran S, Sharma B. Plastics to fuel: a review. Renew Sustain Energy Rev. 2016;54:421–8.

    Article  CAS  Google Scholar 

  114. Miandad R, Barakat M, Aburiazaiza A, Rehan M, Ismail I, Nizami A. Effect of plastic waste types on pyrolysis liquid oil. Int Biodeterior Biodegrad. 2017;119:239–52.

    Article  CAS  Google Scholar 

  115. Vanegas P, Peeters R, Cattrysse D, et al. Improvement potential of today’s WEEE recycling performance: the case of LCD TVs in Belgium. Front Environ Sci Eng. 2017;11:13.

    Article  Google Scholar 

  116. Devasahayam S, Strezov V. Thermal decomposition of magnesium carbonate with biomass and plastic wastes for simultaneous production of hydrogen and carbon avoidance. J Clean Prod. 2018;174:1089–95.

    Article  CAS  Google Scholar 

  117. Miandad R, Barakat M, Aburiazaiza A, Rehan M, Nizami A. Catalytic pyrolysis of plastic waste: A review. Process Saf Environ Prot. 2016;102:822–38.

    Article  CAS  Google Scholar 

  118. Ruan J, Huang J, Qin B, Dong L. Heat transfer in vacuum pyrolysis of decomposing hazardous plastic wastes. ACS Sust Chem Eng. 2018;6:5424–30.

    Article  CAS  Google Scholar 

  119. Saha G, Das T, Handique P, Kalita D, Saikia B. Copyrolysis of Low-Grade Indian Coal and Waste Plastics: Future Prospects of Waste Plastic as a Source of Fuel. Energy Fuels. 2018;32:2421–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Prof. Charles Esimone, Vice Chancellor, Nnamdi Azikiwe University, Awka, Nigeria, and Prof. Azman Hassan of Universiti Teknologi Malaysia are acknowledged for encouraging and motivating legacies.

Funding

No funding is reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Igwe Idumah.

Ethics declarations

Conflict of interest

No conflict of interests is availed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idumah, C.I. Recent advancements in thermolysis of plastic solid wastes to liquid fuel. J Therm Anal Calorim 147, 3495–3508 (2022). https://doi.org/10.1007/s10973-021-10776-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10776-5

Keywords

Navigation