Skip to main content

Upcycling of Plastic Waste

  • Chapter
  • First Online:
Waste Management, Processing and Valorisation

Abstract

The usage of plastic has increased exponentially over the past few years. This has led to an accumulation of plastic wastes in landfills and continuous depletion of fossil fuel resources. Mechanical recycling has been used to compensate for this problem; however, it is not sufficient as the separation process is costly due to feedstock requirements; hence, most plastic waste still ends up in landfills. Recently, there has been interest in the production of waste plastic oil (WPO) from the pyrolysis of plastics which is high in calorific value. Further research has been done in this area to develop the WPO to replace commercial fuel such as diesel. This chapter focuses on providing background information on the pyrolysis of plastics including the operating parameters and WPO characteristics from single and mixed plastic wastes. In addition, information on the performance analysis of WPO and the current progress on appropriate technology (AT) pyrolysis reactors is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joshi, C.A., Seay, J.R.: An appropriate technology based solution to convert waste plastic into fuel oil in underdeveloped regions. J. Sustain. Dev. 9, 133–143 (2016). https://doi.org/10.5539/jsd.v9n4p133

    Article  Google Scholar 

  2. Singh, R.K., Ruj, B.: Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel 174, 164–171 (2016). https://doi.org/10.1016/j.fuel.2016.01.049

    Article  CAS  Google Scholar 

  3. Solis, M., Silveira, S.: Technologies for chemical recycling of household plastics—a technical review and TRL assessment. Waste Manag. 105, 128–138 (2020). https://doi.org/10.1016/j.wasman.2020.01.038

    Article  CAS  Google Scholar 

  4. Qureshi, M.S., Oasmaa, A., Pihkola, H., Deviatkin, I., Tenhunen, A., Mannila, J., Minkkinen, H., Pohjakallio, M., Laine-ylijoki, J.: J. Anal. Appl. Pyrol. Pyrol. Plast. Waste Opportunities Challenges. 152, 1–11 (2020). https://doi.org/10.1016/j.jaap.2020.104804

    Article  CAS  Google Scholar 

  5. Joshi, C., Seay, J., Banadda, N.: A perspective on locally managed decentralized circular economy for waste plastic in developing countries. Environ. Prog. Sustain. Energy. 38, 3–11 (2019). https://doi.org/10.1002/ep.13086

    Article  CAS  Google Scholar 

  6. Anuar Sharuddin, S.D., Abnisa, F., Wan Daud, W.M.A., Aroua, M.K.: A review on pyrolysis of plastic wastes. Energy Convers. Manag. 115, 308–326 (2016). https://doi.org/10.1016/j.enconman.2016.02.037

    Article  CAS  Google Scholar 

  7. Kalargaris, I., Tian, G., Gu, S.: Combustion, performance and emission analysis of a DI diesel engine using plastic pyrolysis oil. Fuel Process. Technol. 157, 108–115 (2017). https://doi.org/10.1016/j.fuproc.2016.11.016

    Article  CAS  Google Scholar 

  8. Mangesh, V.L., Padmanabhan, S., Tamizhdurai, P., Ramesh, A.: Experimental investigation to identify the type of waste plastic pyrolysis oil suitable for conversion to diesel engine fuel. J. Clean. Prod. 246, (2020). https://doi.org/10.1016/j.jclepro.2019.119066

  9. Wong, S.L., Ngadi, N., Abdullah, T.A.T., Inuwa, I.M.: Current state and future prospects of plastic waste as source of fuel: A review. Renew. Sustain. Energy Rev. 50, 1167–1180 (2015). https://doi.org/10.1016/j.rser.2015.04.063

    Article  CAS  Google Scholar 

  10. Kalargaris, I., Tian, G., Gu, S.: Experimental evaluation of a diesel engine fuelled by pyrolysis oils produced from low-density polyethylene and ethylene–vinyl acetate plastics. Fuel Process. Technol. 161, 125–131 (2017). https://doi.org/10.1016/j.fuproc.2017.03.014

    Article  CAS  Google Scholar 

  11. Das, P., Tiwari, P.: The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel. Waste Manag. 79, 615–624 (2018). https://doi.org/10.1016/j.wasman.2018.08.021

    Article  CAS  Google Scholar 

  12. Polymer Database: Polystyrene. Polymer Database (2018). https://polymerdatabase.com/polymers/polystyrene.html Accessed 31 July 2021

  13. Polymer Database: Poly(propylene). Polymer Database (2016). https://polymerdatabase.com/polymers/polypropylene.html. Accessed July 31 2021.

  14. Polymer Database: Polyethylene. Polymer Database (2016).  https://polymerdatabase.com/polymers/polyethylene.html. Accessed July 31 2021.

  15. Muhammad, C., Onwudili, J.A., Williams, P.T.: Thermal degradation of real-world waste plastics and simulated mixed plastics in a two-stage pyrolysis—catalysis reactor for fuel production. Energy Fuels 29, 2601–2019 (2015). https://doi.org/10.1021/ef502749h

    Article  CAS  Google Scholar 

  16. Miandad, R., Barakat, M.A., Aburiazaiza, A.S., Rehan, M., Ismail, I.M.I., Nizami, A.S.: Effect of plastic waste types on pyrolysis liquid oil. Int. Biodeterior. Biodegrad. 119, 239–252 (2017). https://doi.org/10.1016/j.ibiod.2016.09.017

    Article  CAS  Google Scholar 

  17. Horodytska, O., Cabanes, A., Fullana, A.: Plastic waste management: current status and weaknesses. In: The Handbook of Environmental Chemistry, pp. 1–18. Springer, Berlin, Heidelberg (2019)

    Google Scholar 

  18. Anuar Sharuddin, S.D., Abnisa, F., Wan Daud, W.M.A., Aroua, M.K.: Energy recovery from pyrolysis of plastic waste: study on non-recycled plastics (NRP) data as the real measure of plastic waste. Energy Convers. Manag. 148, 925–934 (2017). https://doi.org/10.1016/j.enconman.2017.06.046

  19. Scheirs, J.: Overview of commercial pyrolysis processes for waste plastics. Presented at the (2006)

    Google Scholar 

  20. Miandad, R., Nizami, A.S., Rehan, M., Barakat, M.A., Khan, M.I., Mustafa, A., Ismail, I.M.I., Murphy, J.D.: Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil. Waste Manag. 58, 250–259 (2016). https://doi.org/10.1016/j.wasman.2016.09.023

    Article  CAS  Google Scholar 

  21. DeNeve, D., Joshi, C., Samdani, A., Higgins, J., Seay, J.: Optimization of an appropriate technology based process for converting waste plastic in to liquid fuel via thermal decomposition. J. Sustain. Dev. 10, 116–124 (2017). https://doi.org/10.5539/jsd.v10n2p116

    Article  Google Scholar 

  22. Yan, G., Jing, X., Wen, H., Xiang, S.: Thermal cracking of virgin and waste plastics of PP and LDPE in a semibatch reactor under atmospheric pressure. Energy Fuels 29, 2289–2298 (2015). https://doi.org/10.1021/ef502919f

    Article  CAS  Google Scholar 

  23. Ding, K., Liu, S., Huang, Y., Liu, S., Zhou, N., Peng, P., Wang, Y., Chen, P., Ruan, R.: Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production. Energy Convers. Manag. 196, 1316–1325 (2019). https://doi.org/10.1016/j.enconman.2019.07.001

    Article  CAS  Google Scholar 

  24. Aboulkas, A., Makayssi, T., Bilali, L., El Harfi, K., Nadifiyine, M., Benchanaa, M.: Co-pyrolysis of oil shale and plastics: influence of pyrolysis parameters on the product yields. Fuel Process. Technol. 96, 209–213 (2012). https://doi.org/10.1016/j.fuproc.2011.12.001

    Article  CAS  Google Scholar 

  25. Singh, R.K., Ruj, B., Sadhukhan, A.K., Gupta, P.: Impact of fast and slow pyrolysis on the degradation of mixed plastic waste: product yield analysis and their characterization. J. Energy Inst. 92, 1647–1657 (2019). https://doi.org/10.1016/j.joei.2019.01.009

    Article  CAS  Google Scholar 

  26. Efika, E.C., Onwudili, J.A., Williams, P.T.: Products from the high temperature pyrolysis of RDF at slow and rapid heating rates. J. Anal. Appl. Pyrolysis. 112, 14–22 (2015). https://doi.org/10.1016/j.jaap.2015.01.004

    Article  CAS  Google Scholar 

  27. Miandad, R., Barakat, M.A., Rehan, M., Aburiazaiza, A.S., Ismail, I.M.I., Nizami, A.S.: Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts. Waste Manag. 69, 66–78 (2017). https://doi.org/10.1016/j.wasman.2017.08.032

    Article  CAS  Google Scholar 

  28. Auxilio, A.R., Choo, W.L., Kohli, I., Chakravartula Srivatsa, S., Bhattacharya, S.: An experimental study on thermo-catalytic pyrolysis of plastic waste using a continuous pyrolyser. Waste Manag. 67, 143–154 (2017). https://doi.org/10.1016/j.wasman.2017.05.011

    Article  CAS  Google Scholar 

  29. Praveen Kumar, K., Srinivas, S.: Catalytic co-pyrolysis of biomass and plastics (Polypropylene and Polystyrene) using spent FCC catalyst. Energy Fuels 34, 460–473 (2020). https://doi.org/10.1021/acs.energyfuels.9b03135

    Article  CAS  Google Scholar 

  30. Parku, G.K., Collard, F., Görgens, J.F.: Pyrolysis of waste polypropylene plastics for energy recovery: influence of heating rate and vacuum conditions on composition of fuel product. 209, (2020). https://doi.org/10.1016/j.fuproc.2020.106522

  31. Lam, S.S., Wan Mahari, W.A., Ok, Y.S., Peng, W., Chong, C.T., Ma, N.L., Chase, H.A., Liew, Z., Yusup, S., Kwon, E.E., Tsang, D.C.W.: Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: recovery of cleaner liquid fuel and techno-economic analysis. Renew. Sustain. Energy Rev. 115, (2019). https://doi.org/10.1016/j.rser.2019.109359

  32. Budsaereechai, S., Hunt, A.J., Ngernyen, Y.: Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines. RSC Adv. 9, 5844–5857 (2019). https://doi.org/10.1039/c8ra10058f

    Article  CAS  Google Scholar 

  33. Owusu, P.A., Banadda, N., Seay, J., Kiggundu, N., Banadda, N., Zziwa, A., Seay, J., Kiggundu, N.: Reverse engineering of plastic waste into useful fuel products. 130, 285–293 (2018). https://doi.org/10.1016/j.jaap.2017.12.020

  34. Syamsiro, M., Saptoadi, H., Norsujianto, T., Noviasri, P., Cheng, S., Alimuddin, Z., Yoshikawa, K.: Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors. Energy Procedia. 47, 180–188 (2014). https://doi.org/10.1016/j.egypro.2014.01.212

    Article  CAS  Google Scholar 

  35. Zhang, Y., Ji, G., Ma, D., Chen, C., Wang, Y., Wang, W., Li, A.: Liquid oils produced from pyrolysis of plastic wastes with heat carrier in rotary kiln. Process Saf. Environ. Prot. 142, 203–211 (2020). https://doi.org/10.1016/j.psep.2020.06.021

    Article  CAS  Google Scholar 

  36. Ahmad, I., Ismail Khan, M., Khan, H., Ishaq, M., Tariq, R., Gul, K., Ahmad, W.: Pyrolysis study of polypropylene and polyethylene into premium oil products. Int. J. Green Energy. 12, 663–671 (2015). https://doi.org/10.1080/15435075.2014.880146

    Article  CAS  Google Scholar 

  37. Pinto, F., Costa, P., Gulyurtlu, I., Cabrita, I.: Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield. J. Anal. Appl. Pyrolysis. 51, 39–55 (1999). https://doi.org/10.1016/S0165-2370(99)00007-8

    Article  CAS  Google Scholar 

  38. Quesada, L., Calero, M., Martín-Lara, M.Á., Pérez, A., Blázquez, G.: Production of an alternative fuel by pyrolysis of plastic wastes mixtures. Energy Fuels 34, 1781–1790 (2020). https://doi.org/10.1021/acs.energyfuels.9b03350

    Article  CAS  Google Scholar 

  39. Onwudili, J.A., Insura, N., Williams, P.T.: Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: effects of temperature and residence time. J. Anal. Appl. Pyrolysis. 86, 293–303 (2009). https://doi.org/10.1016/j.jaap.2009.07.008

    Article  CAS  Google Scholar 

  40. Kumar, S., Prakash, R., Murugan, S., Singh, R.K.: Performance and emission analysis of blends of waste plastic oil obtained by catalytic pyrolysis of waste HDPE with diesel in a CI engine. Energy Convers. Manag. 74, 323–331 (2013). https://doi.org/10.1016/j.enconman.2013.05.028

    Article  CAS  Google Scholar 

  41. Kumar, S., Singh, R.K.: Thermolysis of high-density polyethylene to petroleum products. J. Pet. Eng. 2013, 1–7 (2013). https://doi.org/10.1155/2013/987568

    Article  CAS  Google Scholar 

  42. Jadhao, S.B., Seethamraju, S.: Pyrolysis study of mixed plastics waste. IOP Conf. Ser. Mater. Sci. Eng. 736, 1–7 (2020). https://doi.org/10.1088/1757-899X/736/4/042036

    Article  Google Scholar 

  43. Wee, K.P., Ghosh, U.K.: Effect of binary mixture of waste plastics on the thermla behavior of pyrolysis process. Environ. Prog. Sustain. Energy 34, 1113–1119 (2015). https://doi.org/10.1002/ep.12087

    Article  CAS  Google Scholar 

  44. Yuan, Z., Zhang, J., Zhao, P., Wang, Z., Cui, X., Gao, L., Guo, Q.: Synergistic effect and chlorine-release behaviors during co-pyrolysis of LLDPE, PP, and PVC. ACS Omega 5, 11291–11298 (2020). https://doi.org/10.1021/acsomega.9b04116

    Article  CAS  Google Scholar 

  45. Adrados, A., de Marco, I., Caballero, B.M., López, A., Laresgoiti, M.F., Torres, A.: Pyrolysis of plastic packaging waste: a comparison of plastic residuals from material recovery facilities with simulated plastic waste. Waste Manag. 32, 826–832 (2012). https://doi.org/10.1016/j.wasman.2011.06.016

    Article  CAS  Google Scholar 

  46. Hazeltine, B., Bull, C., Wanhammar, L.: Appropriate technology: tools, choices, and implications. Acad. Press. 9, 32–33 (1999). https://www.proquest.com/docview/236165500

  47. Joshi, C.A., Seay, J.R.: Total generation and combustion emissions of plastic derived fuels: a trash to tank approach. Environ. Prog. Sustain. Energy. 39, 1–9 (2020). https://doi.org/10.1002/ep.13151

    Article  CAS  Google Scholar 

  48. Kurniawan, A., Sugiarto, B., Perdana, A.: Design of a simple pyrolysis reactor for plastic waste conversion into liquid fuel using biomass as heating source. Eksergi. 17, 1 (2020). https://doi.org/10.31315/e.v17i1.3080

  49. Armadi, B.H., Rangkuti, C., Fauzi, M.D., Permatasari, R.: The effect of cover use on plastic pyrolysis reactor heating process. AIP Conf. Proc. 1826, (2017). https://doi.org/10.1063/1.4979227

  50. Jayswal, A., Kumar, A., Pradhananga, P., Rohit, S., Bahadur, H.: Design, fabrication and testing of waste plastic pyrolysis plant. Proc. IOE Grad. Conf. 5, 275–282 (2017). https://doi.org/10.13140/RG.2.2.33682.15044

Download references

Acknowledgements

This work was partly funded by Ministry of Higher Education Malaysia Translational Research (TR@M) and Universiti Malaysia Sabah Special Grant Scheme (SDK0321-2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jidon Janaun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mistoh, M.A. et al. (2022). Upcycling of Plastic Waste. In: Yaser, A.Z., Tajarudin, H.A., Embrandiri, A. (eds) Waste Management, Processing and Valorisation. Springer, Singapore. https://doi.org/10.1007/978-981-16-7653-6_2

Download citation

Publish with us

Policies and ethics