Skip to main content
Log in

Influence of Rashba spin–orbit interaction on the effective mass of bound polaron in an anisotropic quantum dot

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The effective mass of bound polaron in an anisotropic quantum dot is calculated by using improved linear combination operator method. Under the influence of Rashba spin–orbit interaction, the effective mass of the polaron splits into two branches on the basis of zero spin. The effective mass of bound polaron is an increase function of electron–phonon coupling strength and Coulomb bound potential strength, and a decreasing function of velocity, transverse and longitudinal confinement lengths. The relations between the spin splitting effective mass and the velocity, transverse confinement length, longitudinal confinement length, electron–phonon coupling strength and Coulomb bound potential strength are also studied by us. Due to the heavy hole characteristics, the spin splitting effective mass is negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E.I. Rashba and A.I.L. Efros Phys. Rev. Lett. 91 126405 (2003)

    Article  CAS  PubMed  ADS  Google Scholar 

  2. S.A. Wolf et al., Science 294 1488 (2001)

  3. J. Li.u, J.-L. Xiao, S.-F. Huo and Z.-Y. Chen Commun. Theor. Phys. 48 930 (2007)

    Article  CAS  ADS  Google Scholar 

  4. A. Noiri et al., Appl. Phys. Lett. 108 153101 (2016)

  5. A. Hofmann et al., Phys. Rev. Lett. 119 176807 (2017)

  6. R. Ferdous et al., Phys. Rev. B 97 241401 (2018)

  7. D. Chevallier et al., Phys. Rev. B. 97 045404 (2018)

  8. P. Mokhtari, G. Rezaei and A. Zamani Superlatt. Microstruct. 106 1 (2017)

    Article  CAS  ADS  Google Scholar 

  9. H.-R. Zhang and J.-L. Xiao Chin. J. Lumi. 31 12 (2010)

    Google Scholar 

  10. S.-P. Shan and S.-H. Chen Iran J. Sci. Tech. Tran. Sci. 41 755 (2017)

    Article  Google Scholar 

  11. J. Lee and H.N. Specror J. Appl. Phys. 99 113708 (2006)

    Article  ADS  Google Scholar 

  12. B. Vaseghi, G. Rezaei and M Malian Opt. Commun. 287 241 (2013)

    Article  CAS  ADS  Google Scholar 

  13. F. Chi and L.-L. Sun Chin. Phys. Lett. 33 117201 (2016)

    Article  ADS  Google Scholar 

  14. Y.-J. Chen, C.-F. Cui and H.-T. Song, Phys. E 111 130 (2019)

  15. R. Khordad Superlatt. Microstruct. 110 146 (2017)

    Article  CAS  ADS  Google Scholar 

  16. L. Hong, J. Ge, S. Shuang and D.-K. Liu Acta Phys. Sin. 71 016301 (2022)

    Article  Google Scholar 

  17. S.-P. Shan and S.-H. Chen J. Low Temp. Phys. 197 370 (2019)

    Article  ADS  Google Scholar 

  18. W.P. Li, J.W. Yin, Y.F. Yu and J.L. Xiao J. Low Temp. Phys. 160 195 (2010)

    Article  CAS  ADS  Google Scholar 

  19. J. W. Yin, W. P. Li, Y. F. Yu and J. L. Xiao J. Low Temp. Phys. 163 53 (2011)

    Article  CAS  ADS  Google Scholar 

  20. S.-S. Li and J.-B. Xia Nanoscale Res. Lett. 4 178 (2009)

    Article  CAS  ADS  Google Scholar 

  21. E. Lipparini, M. Barranco, F. Malet and M. Pi, Phys. Rev. B 74 115303 (2006)

  22. S.P. Shan and S.H. Chen Pramana-J. Phys. 94 15 (2020)

    Article  ADS  Google Scholar 

  23. J.P. Stanley et al., Phys. E, 20, 433 (2004)

  24. S. Jin, H. Wu and T. Xu Appl. Phys. Lett. 95 132105 (2009)

    Article  ADS  Google Scholar 

  25. A. Hofmann et al., Phys. Rev. Lett., 119, 176807 (2017)

  26. J.-X. Xiong, S. Guan, J.-W. Luo and S.-S. Li, Phys. Rev. B, 108, 085309 (2021)

  27. T.-N. Xu, H.-Z. Wu and C.-H. Sui Acta Phys. Sin. 57 7665 (2008)

    Google Scholar 

  28. Z.-J. Qiu et al., Acta Phys. Sin. 53 1186 (2004)

  29. Y.-J. Chen, C.-F. Cui, W.-F. Liu and F.-L. Shao Int. J. Theor. Phys. 59 1829 (2020)

    Article  Google Scholar 

  30. S.-P. Shan, S.-H. Chen and J.-L. Xiao J. Low Temp. Phys. 175 523 (2014)

    Article  Google Scholar 

  31. N. Tokuda, J. Phys.C: Solid St. Phys. 13 L851 (1980)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Ping Shan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, SP. Influence of Rashba spin–orbit interaction on the effective mass of bound polaron in an anisotropic quantum dot. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03113-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03113-7

Keywords

Navigation