Skip to main content
Log in

GUP modified Wigner function using classical-quantum unified framework

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The generalized uncertainty principle (GUP) is a natural consequence of many proposed quantum gravity theories that indicate the modification of quantum mechanics and classical mechanics. A unified classical quantum framework also leads to the interpretation of a Wigner phase-space distribution of a state as a KvN wave function. In this article, we utilize the classical-quantum unified framework to calculate the expression for the GUP-modified Wigner function of a classical harmonic oscillator in the configuration space instead of the conventional approach that uses the momentum space. Further, we plot the modified Wigner functions and show that they are similar to the results obtained in the past literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T W B Kibble Commun. Math. Phys. 65 189 (1979).

    Article  ADS  Google Scholar 

  2. A Ashtekar, TA Schilling arxiv:9706069 [gr-qc] v1 23Jun (1997) https://doi.org/10.48550/arXiv.gr-qc/9706069

  3. J Anandan and Y Aharonov Phys. Rev. Lett. 65 1697 (1990).

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  4. J Anandan Found. Phys. 21 1265 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  5. A Heslot Phys. Rev. D 31 1341 (1985).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  6. D J Rowe, A Ryman and G Rosensteel Phys. Rev. A 22 2362 (1980).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  7. J E Marsden and T Ratiu Introduction to Mechanics and Symmetry, 2nd edn. (New York: Springer) (1999)

    Book  Google Scholar 

  8. G Marmo and G F Volkert Phys. Scripta 82 038117 (2010).

    Article  ADS  Google Scholar 

  9. J von Neumann Ann. Math. 33 587 (1932).

    Article  MathSciNet  Google Scholar 

  10. B O Koopman Proc. Natl. Acad. Sci. USA 17 315 (1931).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. V I Arnold Mathematical Methods of Classical Mechanics, 2nd edn. (New York: Springer) (1989).

    Book  Google Scholar 

  12. E Wigner Phys. Rev. 40 749 (1932).

    Article  CAS  ADS  Google Scholar 

  13. D I Bondar, R Cabrera, D V Zhdanov and H A Rabitz Phys. Rev. A 88 052108 (2013).

    Article  ADS  Google Scholar 

  14. A F Ali et al Phys. Rev. D 84 044013 (2011).

    Article  ADS  Google Scholar 

  15. A Kempf, G Mangano and R B Mann Phys. Rev. D 52 1108 (1995).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  16. S Das and E C Vagenas Phys. Rev. Lett. 101 221301 (2008).

    Article  PubMed  ADS  Google Scholar 

  17. P Pedram Int. J. Mod. Phys. D 19 2003 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  18. L N Chang et al Phys. Rev. D 65 125028 (2002).

    Article  ADS  Google Scholar 

  19. A F Ali et al Phys. Lett. B 678 497 (2009).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  20. F Scardigli Phys. Lett. B 452 39 (1999).

    Article  CAS  ADS  Google Scholar 

  21. F Scardigli and R Casadio Class. Quantum Gravity 20 3915 (2003).

    Article  ADS  Google Scholar 

  22. F Scardigli and R Casadio Eur. Phys. J. C 75 425 (2015).

    Article  ADS  Google Scholar 

  23. F Scardigli, M Blasone, G Luciano and R Casadio Eur. Phys. J. C 78 728 (2018).

    Article  PubMed  ADS  Google Scholar 

  24. S Hossenfelder Living Rev. Relativ. 16 2 (2013).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  25. A N Tawfik and A M Diab Rep. Prog. Phys. 78 126001 (2015).

    Article  PubMed  ADS  Google Scholar 

  26. O I Chashchina, A Sen and Z K Silagadze Int. J. Mod. Phys. D 29 2050070 (2020).

    Article  CAS  ADS  Google Scholar 

  27. E C G Sudarshan Pramana 6 117 (1976).

    Article  ADS  Google Scholar 

  28. T N Sherry and E C G Sudarshan Phys. Rev. D 18 4580 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  29. A Sen, S Dhasmana and Z K Silagadze Ann. Phys. 422 168302 (2020).

    Article  CAS  Google Scholar 

  30. W B Case Am. J. Phys. 76 937 (2008).

    Article  ADS  Google Scholar 

  31. D I Bondar, R Cabrera, R R Lompay, M Y Ivanov and H A Rabitz Phys. Rev. Lett. 109 190403 (2012).

    Article  PubMed  ADS  Google Scholar 

  32. E Gozzi, E Cattaruzza and C Pagani Path Integrals for Pedestrians (Singapore: World Scientific) (2016) https://doi.org/10.1142/9183

    Book  Google Scholar 

  33. H S Snyder Phys. Rev. 71 38 (1947).

    Article  MathSciNet  ADS  Google Scholar 

  34. S Mignemi Phys. Rev. D 84 025021 (2011).

    Article  ADS  Google Scholar 

  35. H Kragh Rev. Hist. Sci. 8 401 (1995).

    Article  Google Scholar 

  36. G Wataghin Nature 142 393 (1938).

    Article  ADS  Google Scholar 

  37. P Bosso Phys. Sci. Forum 2 35 (2021).

    Google Scholar 

  38. R Casadio and F Scardigli Phys. Lett. B 807 135558 (2020).

    Article  MathSciNet  CAS  Google Scholar 

  39. J Mostowski, J Pietraszewicz arXiv (2021) https://doi.org/10.48550/arXiv.2104.06638

  40. S Das et al Can. J. Phys. 94 139 (2016).

    Article  CAS  ADS  Google Scholar 

  41. F Bopp Ann. Inst. H. Poincaré 15 81 (1956).

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Zurab K. Silagadze.

Author information

Authors and Affiliations

Authors

Contributions

BKP: Investigation, writing - original draft, writing—review & editing. AS: Conceptualization, supervision, writing—review & editing.

Corresponding author

Correspondence to Bikram Keshari Parida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Wavefunctions expression

The expression for the ground state, first excited state & second excited state of the wave function \(\Psi (q_{1},q_{2},t)\) are given as follows:

$$\begin{aligned}&\Psi _{00}(q_{1},q_{2},t) \nonumber \\&\quad = e^{- \xi _{0}^{2}/2} \nonumber \\&\qquad \left[ \phi _{00}(q_{1},q_{2}) +\left( \dfrac{m \omega }{\pi \hbar \kappa } \right) ^{1/2} \right. \nonumber \\&\qquad \quad \left. \dfrac{e^{-(\xi _{1}^{2}+\xi _{2}^{2})/2} \alpha }{32} H_{0}(\xi _{1}) \, H_{0}(\xi _{2}) \times \left( -2 \xi _{0}^{4} + 48 \xi _{0}^{2} \right) \right] , \end{aligned}$$
(44)
$$\begin{aligned}&\Psi _{11}(q_{1},q_{2},t)\nonumber \\&\quad = \dfrac{e^{- \xi _{0}^{2}/2} \xi _{0}^{2}}{2} \nonumber \\&\qquad \left[ \phi _{11}(q_{1},q_{2}) +\left( \dfrac{m \omega }{\pi \hbar \kappa }\right) ^{1/2}\right. \nonumber \\&\qquad \quad \left. \dfrac{e^{-(\xi _{1}^{2}+\xi _{2}^{2})/2} \alpha }{64} H_{1}(\xi _{1}) \, H_{1}(\xi _{2}) \times (-2 \xi _{0}^{4} + 72 \xi _{0}^{2} -96)\right] , \end{aligned}$$
(45)
$$\begin{aligned}&\Psi _{22}(q_{1},q_{2},t)\nonumber \\&\quad = \dfrac{e^{- \xi _{0}^{2}/2} \xi _{0}^{4}}{8} \nonumber \\&\qquad \left[ \phi _{22}(q_{1},q_{2}) +\left( \dfrac{m \omega }{\pi \hbar \kappa }\right) ^{1/2}\right. \nonumber \\&\qquad \quad \left. \dfrac{e^{-(\xi _{1}^{2}+\xi _{2}^{2})/2} \alpha }{256} H_{2}(\xi _{1}) \, H_{2}(\xi _{2}) \times (-2 \xi _{0}^{4} + 96 \xi _{0}^{2} -240)\right] . \end{aligned}$$
(46)

In the derivation of the preceding equations, we have approximated \(\beta\) to the first order. Furthermore, we have set \(n_{1} = n_{2}\) during the calculation of the ground and excited states to eliminate time dependence, as differing values of \(n_{1}\) and \(n_{2}\) would introduce such dependence.

Appendix B Expression of modified Wigner function \(W(q,\Pi )\)

In order to find the modified Wigner function \(W(q,\Pi )=\psi (q,\Pi ,t)\), we use the Eq. (34) and we perform transformations of the form \(u = q + Q/2\) & \(v = q - Q/2\) so that the function \(\Psi (q_{1},q_{2},t)\) transforms as \(\psi (q, Q, t)\). Now the Fourier transform of the calculated function \(\psi (q, Q, t)\) using the Eq. (41) gives the modified Wigner function \(W(q,\Pi )\) for the ground state, 1st & 2nd excited states as follows:

$$\begin{aligned}&W_{00}(q,\Pi ) \nonumber \\&\quad = -\frac{1}{2 \sqrt{\pi } x_{0}^{4}}\nonumber \\&\qquad \left[ \sqrt{\frac{2}{\hbar }} \left\{ \left( \Pi ^{4} x_{0}^{8} +6 \Pi ^{2} x_{0}^{6}\right. \right. \right. \nonumber \\&\qquad \quad -6 q^{2} \Pi ^{2} x_{0}^{4} +\left( -6 q^{2}-3 \xi _{0}^{2}\right) x_{0}^{2}\nonumber \\&\qquad \quad \left. \left. +q^{4}+\frac{\xi _{0}^{4}}{8}\right) \alpha -2 x_{0}^{4}\right\} \nonumber \\&\qquad \quad \left. \exp \left[ -\frac{2 \Pi ^{2} x_{0}^{4} +2 q^{2}+\xi _{0}^{2}}{2 x_{0}^{2}}\right] \right] , \end{aligned}$$
(47)
$$\begin{aligned}&W_{11}(q,\Pi ) \nonumber \\&\quad = -\frac{1}{2 \sqrt{\hbar \pi } x_{0}^{8}}\nonumber \\&\quad \left[ \exp \left[ -\frac{2 \Pi ^{2} x_{0}^{4}+2 q^{2} +\xi _{0}^{2}}{2 x_{0}^{2}}\right] \right. \nonumber \\&\qquad \quad \left\{ x_{0}^{12} \alpha \Pi ^{6} +\frac{15 x_{0}^{10} \alpha \Pi ^{4}}{2}\right. \nonumber \\&\qquad +\left( \left( -5 \Pi ^{4} q^{2}-9 \Pi ^{2}\right) \alpha -2 \Pi ^{2}\right) x_{0}^{8}\nonumber \\&\qquad +\left( 1+\left( -3+\left( 15 q^{2} -\frac{9 \xi _{0}^{2}}{2}\right) \Pi ^{2}\right) \alpha \right) x_{0}^{6} \nonumber \\&\qquad +\left( \left( \left( -5 q^{2}+\frac{\xi _{0}^{4}}{8}\right) \Pi ^{2}+21 q^{2}+\frac{9 \xi _{0}^{2}}{4}\right) \alpha -2 q^{2}\right) \nonumber \\&\qquad x_{0}^{4}+q^{2} \alpha \left( q^{4}+\frac{\xi _{0}^{4}}{8}\right) \nonumber \\&\qquad \quad \left. \left. -\frac{25}{2} \alpha \left( q^{4}+\frac{9}{25} q^{2} \xi _{0}^{2} +\frac{1}{200} \xi _{0}^{4}\right) x_{0}^{2}\right\} \sqrt{2} \xi _{0}^{2}\right] , \end{aligned}$$
(48)
$$\begin{aligned}&W_{22}(q,\Pi ) \nonumber \\&\quad =-\frac{1}{8 \sqrt{\pi } x_{0}^{12}}\nonumber \\&\qquad \left[ \textrm{e}^{-\frac{2\Pi ^{2} x_{0}^{4} + 2 q ^ {2} + \xi _ {0} ^ {2}}{2 x _ {0} ^ {2}}} \left( x_{0}^{16} \alpha \Pi ^{8}+8 x_{0}^{14} \alpha \Pi ^{6}\right. \right. \nonumber \\&\qquad +\left( \left( -\frac{67}{2} \Pi ^{4}-4 \Pi ^{6} q^{2}\right) \alpha -2 \Pi ^{4}\right) x_{0}{}^{12}\nonumber \\&\qquad +\left( \left( \left( 44 q^{2}-6 \xi _{0}^{2}\right) \Pi ^{4}+9 \Pi ^{2}\right) \alpha +4 \Pi ^{2}\right) \nonumber \\&\qquad \times x_{0 }^{10}+\left( \left( \frac{15}{2} +\left( -10 q^{4}+\frac{\xi _{0}^{4}}{8}\right) \Pi ^{4}\right. \right. \nonumber \\&\qquad \quad \left. \left. +\left( -15 q^{2}+12 \xi _{0}^{2}\right) \Pi ^{2}\right) \alpha -4 \Pi ^{2}q^{2}-1\right) \nonumber \\&\qquad \times x_{0 }^{8} +\left( \left( \left( -12 q^{2} \xi _{0}^{2}+16 q^{4} -\frac{1}{4} \xi _{0}^{4}\right) \Pi ^{2}\right. \right. \nonumber \\&\qquad \quad \left. \left. -69 q^{2}-3 \xi _{0}^{2}\right) \alpha +4 q^{2}\right) x_{0 }^{6}\nonumber \\&\qquad +\left( \left( \frac{1}{4} q^{2} \xi _{0}^{4}-4 q^{6}\right) \Pi ^{2}\right. \nonumber \\&\qquad \left. \left. +\frac{157 q^{4}}{2}+\frac{\xi _{0}^{4}}{16} +12 q^{2} \xi _{0}^{2}\right) \alpha -2 q^{4}\right) x_{0}^{4}\nonumber \\&\qquad +\left( -20 q^{6}-6 q^{4} \xi _{0}^{2} -\frac{1}{4} q^{2} \xi _{0}^{4}\right) \alpha x_{0}^{2}\nonumber \\&\qquad \quad \left. \left. + q^{4} \alpha \left( q^{4}+\frac{\xi _{0}^{4}}{8}\right) \right) \sqrt{2} \sqrt{\frac{1}{\hbar }} \xi _{0}^{4}\right] . \end{aligned}$$
(49)

Appendix C Expression for probability distributions for harmonic oscillator with GUP

We define the classical probability density for unperturbed (\(\beta =0\)) HO as

$$\begin{aligned} P_{cl}(q) dq&=\dfrac{2 dt_{cl} }{T_{cl}} = \dfrac{\sqrt{m \omega ^{2}}}{\pi } \dfrac{1}{\sqrt{2 E^{(0)}_{n} - m \omega ^{2} q^{2}}}\nonumber \\&= \text {probability of finding the particle in the interval}\nonumber \\&\quad q\ \text {to}\ q+dq. \end{aligned}$$
(50)

where \(E^{(0)}_{n} = (n + 1/2) \hbar \omega \kappa\) & \(T_{cl}=\dfrac{2 \pi }{\omega }\) is the time period of the SHO. Similarly, for the modified HO (\(\beta \ne 0\)), solving the Hamiltonian Eq. (26) we obtain

$$\begin{aligned} dt = \frac{2 \sqrt{2} m^{2} \beta }{\sqrt{m \beta \left( -1+\sqrt{1-16 \beta m^{2}\left( m \omega ^{2} q^{2}-2 E_{n}\right) }\right) }} \, dq. \end{aligned}$$
(51)

Now the modified classical probability density (for \(\beta \ne 0\)) for the Hamiltonian Eq. (26) is

$$\begin{aligned}&P_{cl-modified}(q) dq \nonumber \\&\quad =\dfrac{2 dt }{T_{cl-modified}}\nonumber \\&\quad = -\frac{4 \sqrt{2} m^{2} \beta \omega }{\sqrt{m \beta \left( -1+\sqrt{1-16 \beta m^{2} \left( m \omega ^{2} q^{2}-2 E_{n}\right) }\right) } \pi \left( 3 \alpha \xi _{0}^{2}-2\right) } \end{aligned}$$
(52)

where the modified time period is given as [26] \(T_{cl-modified} = \dfrac{2 \pi }{\omega } \left( 1 - \dfrac{3 \alpha }{2} \xi _{0}^{2} \right)\) and \(E_{n} = (n + 1/2) \hbar \omega \kappa + \dfrac{\alpha }{4} (6 n^{2} + 6 n +2) \hbar \kappa \omega\).

The expression for the quantum probability distribution can be calculated by integrating the Wigner functions Eqs. (47), (48), (49) using the Eq. (42) and it can be expressed, for ground state, first excited state, and second excited state respectively as

$$\begin{aligned} |\chi _{0}(q)|^{2}&=\frac{\sqrt{2} \textrm{e}^{-\frac{\left( 2 q^{2} +\xi _{0}^{2}\right) }{2 x_{0}^{2}}} |\left( \frac{15 x_{0}^{4}}{4} +\left( -9 q^{2}-3 \xi _{0}^{2}\right) x_{0}^{2} +q^{4}+\frac{\xi _{0}^{4}}{8}\right) \alpha -2 x_{0}^{4} |\sqrt{\frac{1}{\hbar }}}{2 x_{0}^{5}}, \end{aligned}$$
(53)
$$\begin{aligned} |\chi _{1}(q)|^{2}&= \frac{\sqrt{2} |\left( \frac{99 x_{0}^{4}}{4}+\left( -15 q^{2} -\frac{9 \xi _{0}^{2}}{2}\right) x_{0}^{2}+ q^{4} +\frac{\xi _{0}^{4}}{8}\right) \alpha -2 x_{0}^{4}|e^{-\frac{9\left( 2 q^{2}+\xi _{0}^{2}\right) }{2 x_{0}^{2}}}}{2 \sqrt{\hbar } x_{0}{ }^{9}} q^{2}|\xi _{0}|^{2}, \end{aligned}$$
(54)
$$\begin{aligned} |\chi _{2}(q)|^{2}&= \frac{1}{256 x_{0}^{13}}\nonumber \\&\quad \left[ \sqrt{2} \textrm{e}^{-\frac{\left( 2 q^{2} +\xi _{0}^{2}\right) }{2 x_{0}^{2}}} \xi _{0}^{4}\right. \nonumber \\&\qquad \sqrt{\frac{1}{\hbar }} \mid \left( 16 \alpha q^{6} -344 \alpha q^{4} x_{0}^{2} +1092 \alpha x_{0}^{4} q^{2}\right. \nonumber \\&\qquad -96 \alpha \xi _{0}^{2} q^{2} x_{0}^{2} +2 \alpha \xi _{0}^{4} q^{2}-270 \alpha x_{0}^{6}\nonumber \\&\qquad \left. +48 \alpha \xi _{0}^{2} x_{0}^{4}-\xi _{0}^{4} \alpha x_{0}^{2}-32 q^{2} x_{0}^{4}+16 x_{0}^{6}\right) \nonumber \\&\qquad \quad \left. \left( 2 q^{2} -x_{0}^{2}\right) \mid \right] . \end{aligned}$$
(55)

Appendix D Expression for \(\xi _{0}\)-free modified Wigner function \(W(q,\Pi )\)

By employing the methodologies delineated in “Appendix 1” and utilizing Eqs. (34) and (35), it is feasible to compute the \(\xi _{0}\) parameter-free Wigner functions \(W(q,\Pi )\) for the ground state, first excited state, and second excited state. The Wigner function for the ground state, 1st excited state, and 2nd excited state are given by:

$$\begin{aligned}&W_{00}(q,\Pi ) \nonumber \\&\quad = - \frac{1}{2 \sqrt{\hbar \pi } x_0{ }^4}\nonumber \\&\qquad \left[ \textrm{e}^{\frac{-\Pi ^2 x_0{ }^4-q^2}{x_0{ }^2}} \sqrt{2}\right. \nonumber \\&\quad \quad \left( x_0{ }^8 \alpha \Pi ^4+6 x_0{ }^6 \alpha \Pi ^2 +\left( -6 \alpha \Pi ^2 q^2-2\right) x_0{ }^4 \right. \nonumber \\&\quad \quad \left. \left. -6 \alpha q^2 x_0{ }^2+\alpha q^4\right) \right] , \end{aligned}$$
(56)
$$\begin{aligned}&W_{11}(q,\Pi ) \nonumber \\&\quad = -\frac{1}{2 \sqrt{\pi \hbar } x_0^6}\nonumber \\&\quad \left[ \sqrt{2}\left\{ 2 x_0^{12} \alpha \Pi ^6 -10 x_0^8 \alpha q^2 \Pi ^4\right. \right. \nonumber \\&\quad \quad +15 x_0^{10} \alpha \Pi ^4-10 \alpha q^4 \Pi ^2 x_0^4 +30 \alpha q^2 \Pi ^2 x_0^6-30 x_0^8 \alpha \Pi ^2\nonumber \\&\quad \quad -4 x_0^8 \Pi ^2+2 \alpha q^6-25 \alpha q^4 x_0^2 +30 \alpha q^2 x_0^4 \nonumber \\&\quad \quad \left. \left. -4 q^2 x_0^4+2 x_0^6\right\} \textrm{e}^{- (\Pi ^{2} x_{0}^{4} + q^2)/x_{0}^2} \right] , \end{aligned}$$
(57)
$$\begin{aligned}&W_{22}(q,\Pi ) \nonumber \\&\quad = - \frac{\sqrt{2}}{\sqrt{\hbar \pi } x_{0}^8} \nonumber \\&\qquad \left[ e^{-(\Pi ^{2} x_{0}^4 + q^2)/x_{0}^{2}}\right. \nonumber \\&\qquad \left\{ x_0^{16} \alpha \Pi ^8+8 x_0^{14} \alpha \Pi ^6 +\left( \left( -4 \Pi ^6 q^2-\frac{97}{2} \Pi ^4\right) \alpha -2 \Pi ^4\right) x_0^{12} \right. \nonumber \\&\qquad +\left( \left( 44 \Pi ^4 q^2+39 \Pi ^2\right) \alpha +4 \Pi ^2\right) x_0^{10}\nonumber \\&\quad \quad +\left( \left( -10 \Pi ^4 q^4 -45 \Pi ^2 q^2\right) \alpha -4 \Pi ^2 q^2-1\right) x_0^8\nonumber \\&\quad \quad +\left( \left( 16 \Pi ^2 q^4-39 q^2\right) \alpha +4 q^2\right) x_0^6 \nonumber \\&\quad \quad + ((- 4 \Pi ^2 q^6 + \frac{127}{2} q^4) \alpha - 2 q^4) x_{0}^{4} \nonumber \\&\quad \quad \left. \left. - 20 \alpha q^6 x_{0}^2 + \alpha q^8 \right\} \right] . \end{aligned}$$
(58)

Notice that Wigner functions \(W(q,\Pi )\) for \(\alpha = 0\) is same as in the Ref. [39].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, B.K., Sen, A. GUP modified Wigner function using classical-quantum unified framework. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03086-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03086-7

Keywords

Navigation