Skip to main content
Log in

Geometrization of quantum mechanics

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Quantum mechanics is cast into a classical Hamiltonian form in terms of a symplectic structure, not on the Hilbert space of state-vectors but on the more physically relevant infinite-dimensional manifold of instantaneous pure states. This geometrical structure can accommodate generalizations of quantum mechanics, including the nonlinear relativistic models recently proposed. It is shown that any such generalization satisfying a few physically reasonable conditions would reduce to ordinary quantum mechanics for states that are “near” the vacuum. In particular the origin of complex structure is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E.: Foundations of mechanics. New York, Amsterdam: Benjamin 1967

    Google Scholar 

  2. Maclane, S.: Geometrical mechanics (duplicated lecture notes). University of Chicago (1968)

  3. Souriau, J.M.: Commun. math. Phys.1, 374 (1966)

    Google Scholar 

  4. Souriau, J.M.: Ann. Inst. Henri Poincaré A6, 311 (1967)

    Google Scholar 

  5. Kostant, B.: Quantization and unitary representations. Lecture notes in mathematics, Vol. 170. Berlin, Heidelberg, New York: Springer 1970

    Google Scholar 

  6. Chernoff, P.R., Marsden, J.E.: Properties of infinite-dimensional Hamiltonian systems. Lecture notes in mathematics, Vol. 425. Berlin, Heidelberg, New York: Springer 1974

    Google Scholar 

  7. Haag, R., Kastler, D.: J. Math. Phys.5, 848 (1964)

    Google Scholar 

  8. Edwards, C.M.: Commun. math. Phys.20, 26 (1971)

    Google Scholar 

  9. Davis, E.B., Lewis, J.L.: Commun. math. Phys.17, 239 (1970)

    Google Scholar 

  10. Birkhoff, G., Neumann, J. von: Ann. Math.37, 823 (1936)

    Google Scholar 

  11. Varadarajan, V.S.: Geometry of quantum theory, Vol. 1. Princeton, NJ: van Nostrand 1968

    Google Scholar 

  12. Mielnik, B.: Commun. math. Phys.37, 221 (1974)

    Google Scholar 

  13. Kibble, T.W.B.: Commun. math. Phys.64, 73–82 (1978)

    Google Scholar 

  14. Haag, R., Bannier, U.: Commun. math. Phys.60, 1 (1978)

    Google Scholar 

  15. Penrose, R.: Gen. Rel. Grav.7, 31 (1976);7, 171 (1976)

    Google Scholar 

  16. Jauch, J.M.: Foundations of quantum mechanics. Reading, Mass.: Addison-Wesley 1968

    Google Scholar 

  17. Piron, C.: Foundations of quantum physics. New York, Amsterdam: Benjamin 1976

    Google Scholar 

  18. Bogolubov, N.N., Logunov, A.A., Todorov, I.T.: Introduction to axiomatic quantum field theory. Reading, Mass.: Benjamin 1975

    Google Scholar 

  19. Lang, S.: Introduction to differentiable manifolds. New York, London: Interscience 1962

    Google Scholar 

  20. Yamamuro, S.: Differential calculus in topological linear spaces. Lecture notes in mathematics, Vol. 374. Berlin, Heidelberg, New York: Springer 1974

    Google Scholar 

  21. Kijowski, J., Szczyrba, W.: Studia Math.30, 247 (1968)

    Google Scholar 

  22. Penot, J.-P.: Studia Math.47, 1 (1973)

    Google Scholar 

  23. Lloyd-Smith, J.: Trans. Am. Math. Soc.187, 249 (1974)

    Google Scholar 

  24. Choquet-Bruhat, Y., de Witt-Morette, C., Willard-Bleick, M.: Analysis, manifolds and physics. Amsterdam: North-Holland 1977

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Haag

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kibble, T.W.B. Geometrization of quantum mechanics. Commun.Math. Phys. 65, 189–201 (1979). https://doi.org/10.1007/BF01225149

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01225149

Keywords

Navigation