Skip to main content
Log in

Modes transition and network synchronization in extended Hindmarsh–Rose model driven by mutation of adaptation current under effects of electric field

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Considering the influence of electric field and introducing the adaptation current as spike-burst firing mutation parameter, a novel variant Hindmarsh–Rose neural model is proposed to study the firing modes of neural systems. (1) In the case of single HR neural system, it is shown that the firing modal fusion absorption of neuron can be occurred with the increasing of current intensity. A higher sinusoidal current frequency transforms HR neuronal model from asymmetric dual-mode state to symmetric dual-mode state. There exists a singularity at which the neuron has a larger firing mode mutation when the adaptation current mutation parameter is applied. (2) In the case of three-dimensional network with the chemically coupled HR neurons, it is observed that the firing behavior of the core neuron of network has the strongest stability when the noise-like or the periodic electric field is imposed on the vertex neurons and edge center neurons of three-dimensional network. At the singular point of the mutation parameter, the synchronization of the neuron firing modes shows a relationship of nonlinear function when the electric field is not considered with the increasing of the chemical synapse intensity, the synchronization is firstly decreased and then increased. (3) In the case of star network with chemically coupled neurons, the phenomenon of bursting firing modal fusion and absorption can be observed when chemical synapse intensity is larger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. A L Hodgkin and A F Huxley J. Physiol. 116 497 (1952)

    Article  Google Scholar 

  2. R Barrio, S Coombes, M Desroches et al Commun. Nonlinear Sci. Numer. Simul. 86 105275 (2020)

    Article  Google Scholar 

  3. R Fitzhugh Biophys. J. 1 445 (1961)

    Article  ADS  Google Scholar 

  4. J S Nagumo, S Arimoto and S Yoshizawa Proc. Ire. 50 2061 (1962)

    Article  Google Scholar 

  5. J L Hindmarsh and R M Rose Nature 296 162 (1982)

    Article  ADS  Google Scholar 

  6. J L Hindmarsh R. Soc. Lond. B. 221 87 (1984)

    Article  ADS  Google Scholar 

  7. Y Wang, Z Wang and W Wang J. Phys. Soc. Jpn. 69 276 (2000)

    Article  ADS  Google Scholar 

  8. J M González-Miranda Chaos 13 845 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  9. M Dhamala, V K Jirsa and M Ding Phys. Rev. Let. 92 074104 (2004)

    Article  ADS  Google Scholar 

  10. I Belykh, E D Lange and M Hasle Phys. Rev. Let. 94 188101 (2005)

    Article  ADS  Google Scholar 

  11. R J Erichsen, M S Mainieri and L G Brunnet Phys. Rev. E 74 061906 (2006)

    Article  ADS  Google Scholar 

  12. R Erichsen and L G Brunnet Phys. Rev. E. 78 061917 (2008)

    Article  ADS  Google Scholar 

  13. E D Lange and M Hasle Biol. Cybern. 99 349 (2008)

    Article  Google Scholar 

  14. N Burić, K Todorović and N Vasovi Phys. Rev. E 78 036211 (2008)

    Article  ADS  Google Scholar 

  15. M Storace, D Linaro and D Lange Chaos 18 162 (2008)

    Article  Google Scholar 

  16. I Grosu, R Banerjee, P K Roy et al Phys. Rev. E. 80 016212 (2009)

    Article  ADS  Google Scholar 

  17. M M Shrii, D V Senthilkumar and J Kurths Phys. Rev. E. 85 057203 (2012)

    Article  ADS  Google Scholar 

  18. F M M E M KakmeniMoukamInack et al Phys. Rev. E. 89 052919 (2014)

    Article  Google Scholar 

  19. J Hizanidis, V Kanas, A Bezerianos et al Int. J. Bifurcat. Chaos 24 1450030 (2014)

    Article  Google Scholar 

  20. M Hayati, M Nouri, D Abbott et al IEEE Trans. Circuits II 63 463 (2016)

    Google Scholar 

  21. A Mishra, S Saha, M Vigneshwaran et al Phys. Rev. E. 97 062311 (2017)

    Article  ADS  Google Scholar 

  22. R Hosaka and Y Sakai Phys. Rev. E. 92 042705 (2015)

    Article  ADS  Google Scholar 

  23. Y Xu, Y Jia, J Ma et al Sci. Rep. 8 1349 (2018)

    Article  ADS  Google Scholar 

  24. M Y Ge, Y Jia, Y Xu et al Appl. Math. Comput. 352 136 (2019)

    MathSciNet  Google Scholar 

  25. B Dmitri, G Strukov, S Gregory et al Nature 453 80 (2008)

    Article  Google Scholar 

  26. M Y Ge, L L Lu, Y Xu et al Chaos Soliton Fract. 133 109645 (2020)

    Article  Google Scholar 

  27. Y Liu, J Ma, Y Xu et al Int. J. Bifurc. Chaos 29 1950156 (2019)

    Article  Google Scholar 

  28. L L Lu, Y Jia, Y Xu et al Sci. China Technol. Sci. 62 427 (2019)

    Article  ADS  Google Scholar 

  29. M Y Ge, Y Jia, L L Lu et al Nonlinear Dyn. 99 2355 (2020)

    Article  Google Scholar 

  30. Y Xu, L L Lu, M Y Ge et al Eur. Phys. J. B. 92 245 (2019)

    Article  ADS  Google Scholar 

  31. Y Xu, Y Jia, H T Wang et al Nonlinear Dyn. 95 3237 (2019)

    Article  Google Scholar 

  32. R Garrappa Nonlinear Sci. Numer. Simul. 90 105359 (2020)

    Article  Google Scholar 

  33. L L Lu, C Bao, M Y Ge et al Eur. Phys. J. Spec. Top. 228 2101 (2019)

    Article  Google Scholar 

  34. L L Lu, Y Jia, J B Kirunda et al Nonlinear Dyn. 95 1673 (2019)

    Article  Google Scholar 

  35. K Usha and P A Subha Nonlinear Dyn. 96 2115 (2019)

    Article  Google Scholar 

  36. K Usha and P A Subha Biosystems 178 1 (2019)

    Google Scholar 

  37. I Bashkirtseva, L Ryashko and E Slepukhina Phys. Rev. E. 99 062408 (2019)

    Article  ADS  Google Scholar 

  38. K Rajagopal, A J M Khalaf, F Parastesh et al Nonlinear Dyn. 98 477 (2019)

    Article  Google Scholar 

  39. S Kundu, B K Bera, D Ghosh et al Phys. Rev. E. 99 022204 (2019)

    Article  ADS  Google Scholar 

  40. S Armand et al Commun. Nonlinear. Sci. Numer. Simul. 84 105208 (2020)

    Article  MathSciNet  Google Scholar 

  41. S Wang, S He, K Rajagopal et al Eur. Phys. J. Spec. Top. 229 929 (2020)

    Article  Google Scholar 

  42. Y Yu, M Shi, H Kang et al Nonlinear Dyn. 100 891 (2020)

    Article  Google Scholar 

  43. X B Rao, X P Zhao, J S Gao et al Commun. Nonlinear. Sci. Numer. Simulat. 94 105569 (2021)

    Article  Google Scholar 

  44. A Shilnikov and M Kolomiets Int. J. Bifurcat. Chaos 18 2141 (2008)

    Article  Google Scholar 

  45. D Li, Y Zheng and Y Yang Indian J. Phys. 93 1477 (2019)

    Article  ADS  Google Scholar 

  46. Z L Hou, J Ma, X Zhan et al Chaos Soliton Fract. 142 110522 (2021)

    Article  Google Scholar 

  47. M Lv and J Ma Neurocomputing 205 375 (2016)

    Article  Google Scholar 

  48. M Lv, C N Wang, G D Ren et al Nonlinear Dyn. 85 1479 (2016)

    Article  Google Scholar 

  49. A Wolf, J B Swift, H L Swinney et al Physica D 16 285 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  50. J X Chen, H Zhang, L Y Qiao et al Commun. Nonlinear Sci. Numer. Simul. 54 202 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  51. A Shilnikov, L Shilnikov et al Math. J. 5 269 (2005)

    MathSciNet  Google Scholar 

  52. J Ma, W Xu, P Zhou et al Phys. A 536 122598 (2019)

    Article  MathSciNet  Google Scholar 

  53. L L Lu, Y Jia, M Y Ge et al Nonlinear Dyn. 100 877 (2020)

    Article  Google Scholar 

  54. A S Pikovsky and K Jurgen Phys. Rev. Let. 78 775 (1997)

    Article  ADS  Google Scholar 

  55. Y Xu, Y Jia, J B Kirunda et al Complexity 2018 3012743 (2018)

    Google Scholar 

  56. Y Xu, Y Jia, J Ma et al Chaos Soliton Fract. 104 435 (2017)

    Article  ADS  Google Scholar 

  57. K Usha J. Mod. Phys. C 29 1850023 (2018)

    Article  ADS  Google Scholar 

  58. G W Wang, D Yu, Q M Ding et al Chaos Soliton Fract. 150 111210 (2021)

    Article  Google Scholar 

  59. K K Wang, H Ye, Y J Wang et al Indian J. Phys. 96 1943 (2022)

    Article  ADS  Google Scholar 

  60. G W Wang, L J Yang, X Zhan et al Nonlinear Dyn. 107 3945 (2022)

    Article  Google Scholar 

  61. M Nag Indian J. Phys. 94 689 (2020)

    Article  ADS  Google Scholar 

  62. G W Wang, Y Wu, F L Xiao et al Physica A 597 127274 (2022)

    Article  Google Scholar 

  63. Y Guo, L Wang, F Wei et al Indian J. Phys. 94 1625 (2020)

    Article  ADS  Google Scholar 

  64. G W Wang, M Y Ge, L L Lu et al Nonlinear Dyn. 103 2627 (2021)

    Article  Google Scholar 

  65. J C Shi, M Luo et al Indian J. Phys. 92 1009 (2018)

    Article  ADS  Google Scholar 

  66. G W Wang, Y Xu, M Y Ge et al AEU Int. J. Electro. Commun. 120 153209 (2020)

    Article  Google Scholar 

  67. G W Wang and Y Fu Math. Biosci. Eng. 20 3944 (2023)

    Article  Google Scholar 

  68. D Yu, G W Wang, T Y Li et al Commun. Nonlinear Sci. Numer. Simul. 117 106894 (2023)

    Article  Google Scholar 

  69. D Yu, X Y Zhou, G W Wang et al Cognit. Neurodyn. 16 887 (2022)

    Article  Google Scholar 

  70. T Y Li et al Nonlinear Dyn. 108 2611 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Science and Technology Project of Jiangxi Provincial Department of Education under Grants Nos. GJJ2202903 & GJJ203111, Science and Technology Project of Yuzhang Normal University under Grants No. YZYB-21-17. Talent Introduction Project (No. NGRCZX-22-07), Special Fund for Doctor of Science and Technology Program of Nanchang Institute of Technology under Grants No. NGKJ-21-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.-W. Wang.

Ethics declarations

Competing interest

The authors declare that they have no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, GW., Fu, Y. Modes transition and network synchronization in extended Hindmarsh–Rose model driven by mutation of adaptation current under effects of electric field. Indian J Phys 97, 2327–2337 (2023). https://doi.org/10.1007/s12648-023-02613-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02613-2

Keywords

Navigation