Skip to main content
Log in

Exponential space-dependent heat generation on Powell–Eyring hybrid nanoliquid under nonlinear thermal radiation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Hybrid nanofluids were popularized by heat transfer fluids into higher surface strength, dispersion and diffusion prospects related into traditional nanofluid. The novel characteristics of a single-phase hybrid nanofluid profile coincidence in studying nanoparticles mass including base fluid mass to produce solid equivalent density and addition to solid equivalent specific heat about constant pressure. On this work, flow and volumetric entropy generation and convective heat transport on Powell–Eyring hybrid nanofluid have been consider. Hybrid nanofluids attend the space through the systematic horizontal porous stretching surface. Impact on exponential space-dependent heat generation and nonlinear thermal radiation was more combined on the specified sketch. Mathematical equations about conservation of energy, mass, entropy and momentum are interpreted below acceptance on boundary layer flow of Powell–Eyring hybrid nanofluid. Comparison results were collected as conversion away from governing partial differential equations into ordinary differential equations, applying correlation variables. Finite element method was an external for finding the relative results of decreased ordinary differential equations. Numerical computing was achieved about zinc oxide–gold water (ZnO–Au/H2O) hybrid nanofluid and conventional gold water (Au–H2O) nanofluid. The notable allegation indicated to the hybrid Powell–Eyring nanofluid was best thermal conductor although related into a conventional nanofluid and pure water. Every rising on Reynolds number and Brinkman number developed into total entropy for that structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R Powell and H Eyring Nature 154 427 (1944)

    Article  ADS  Google Scholar 

  2. M Patel and M G Timol Appl. Numer. Math. 59 84 (2009)

    Article  Google Scholar 

  3. A Aziz, W Jamshed, T Aziz, H M S Bahaidarah and L U Khalil Ur Rehman J. Therm. Anal. Calorim. 143 1331 (2021)

    Article  Google Scholar 

  4. K Vafai, A A Khan, G Fatima, S M Sait and R Ellahi Int. J. Numer. Methods Heat Fluid Flow 31 1085 (2021)

    Article  Google Scholar 

  5. W F Xia, F Haq, M Saleem, M Ijaz Khan, S U Khan and Y M Chu Ain Shams Eng. J. 12 4063 (2021)

    Article  Google Scholar 

  6. M G Ibrahim Int. Commun. Heat Mass Transf. 134 105987 (2022)

    Article  Google Scholar 

  7. S U S Choi Conference: 1995 international mechanical engineering congress and exhibition, San Francisco, CA, p 12 (1995)

  8. G Lu (Berlin: Springer) (2016)

  9. K Gangadhar, D Vijaya Kumar, M Venkata Subba Rao, T Kannan and G Sakthivel Int. J. Ambient Energy 43 1248 (2022)

    Article  Google Scholar 

  10. J Lee, S Lee, C Cho and S Kim Int. J. Heat Mass Transf. 192 122941 (2022)

    Article  Google Scholar 

  11. J Sarkar, P Ghosh and A Adil Renew. Sust. Energ. Rev. 43 164 (2015)

    Article  Google Scholar 

  12. J R Babu, K K Kumar and S S Rao Renew. Sust. Energ. Rev. 77 551 (2017)

    Article  Google Scholar 

  13. F Mabood, G P Ashwinkumar and N Sandeep J. Therm. Anal. Calorim. 146 227 (2021)

    Article  Google Scholar 

  14. F Selimefendigil and H F Oztop Int. J. Heat Mass Transf. 178 121623 (2021)

    Article  Google Scholar 

  15. N Abbas, K U Rehman, W Shatanawi and M Y Malik Int. Commun. Heat mass Transf. 135 106107 (2022)

    Article  Google Scholar 

  16. W Cao, L Animasaunl, S J Yook, V A Oladipupo and X Ji Int. Commun. Heat Mass Transf. 135 106069 (2022)

    Article  Google Scholar 

  17. Y Zhai, P Yao, X Shen and H Wang Int. Commun. Heat Mass Transf. 135 106118 (2022)

    Article  Google Scholar 

  18. J M Avellaneda, F Bataille, A Toutant and G Flamant Int. J. Heat Mass Transf. 176 121463 (2021)

    Article  Google Scholar 

  19. N R Devi, S Moolya, H F Oztop, N Abu-Hamdeh, P Padmanathan and A Satheesh Eur. Phys. J. Plus 137 482 (2022)

    Article  Google Scholar 

  20. S Gowtham, C Sivaraj and M A Sheremet Eur. Phys. J. Plus 137 510 (2022)

    Article  Google Scholar 

  21. S Marzougui, F Mebarek-Oudina, M Magherbi and A Mchirgui Int. J. Numer. Methods Heat Fluid Flow 32 2047 (2022)

    Article  Google Scholar 

  22. Z Sarbazi and F Hormozi Int. J. Numer. Methods Heat Fluid Flow 32 62 (2022)

    Article  Google Scholar 

  23. S K Mehta, S Pati, S Ahmed, P Bhattacharyya and J J Bordoloi Int. J. Numer. Methods Heat Fluid Flow 32 1618 (2022)

    Article  Google Scholar 

  24. M N Sadiq, B Sarwar, M Sajid and N Ali J. Therm. Anal. Calorim. 147 5199 (2022)

    Article  Google Scholar 

  25. B Nagaraja, B J Gireesha and J Therm Anal. Calorim. 143 4071 (2021)

    Article  Google Scholar 

  26. H Berrehal, G Sowmya and O D Makinde Int. J. Numer. Methods Heat Fluid Flow 32 1643 (2022)

    Article  Google Scholar 

  27. W M Qian, M Ijaz Khan, F Shah, M Khan, Y M Chu, W A Khan and M Nazeer Arab. J. Sci. Eng. 47 867 (2022)

    Article  Google Scholar 

  28. K Gangadhar, D Naga Bhargavi, M Venkata Subba Rao and A J Chamkha Phys. Scr. 96 095205 (2021)

    Article  Google Scholar 

  29. M H Abolbashari, N Freidoonimehr, F Nazari and M M Rashidi Powder Technol. 267 256 (2014)

    Article  Google Scholar 

  30. S Das, S Chakraborty, R N Jana and O D Makinde Appl. Math. Mech. 36 1593 (2015)

    Article  Google Scholar 

  31. S Dinarvand and I Pop Adv. Powder Technol. 28 900 (2017)

    Article  Google Scholar 

  32. M Aghamajidi, M Eftekhari Yazdi, S Dinarvand and I Pop Propuls. Power Res. 7 78 (2018)

    Article  Google Scholar 

  33. H A Mohammed, A N Al-Shamani and J M Sheriff Int. Commun. Heat Mass Transf. 39 1584 (2012)

    Article  Google Scholar 

  34. R S Vajjha and D K Das Int. J. Heat Mass Transf. 52 4675 (2009)

    Article  Google Scholar 

  35. D Srinivasacharya, U Mendu and K Venumadhav Procedia Eng. 127 1064 (2015)

    Article  Google Scholar 

  36. S Wang, B Zeng and C Li Chin. J. Catal. 39 1219 (2018)

    Article  Google Scholar 

  37. R J Tiwari and M K Das Int. J. Heat Mass Transf. 50 2002 (2007)

    Article  Google Scholar 

  38. W Jamshed and A Aziz Results Phys. 9 195 (2018)

    Article  ADS  Google Scholar 

  39. E Magyari and A Pantokratoras Int. Commun. Heat Mass Transf. 38 554 (2011)

    Article  Google Scholar 

  40. P Kumam, Z Shah, A Dawar, H Ur-Rasheed and S Islam Math. Probl. Eng. 2019 1 (2019)

    Article  Google Scholar 

  41. T Tayebi, A J Chamkha, A A Melaibari and E Raouache Int. Commun. Heat Mass Transf. 126 105397 (2021)

    Article  Google Scholar 

  42. S A M Mehryan and M Ghalambaz J. Energy Storage 28 101236 (2020)

    Article  Google Scholar 

  43. M Ghalambaz, S A M Mehryan, A Hajjar and A Veismoradi Adv. Powder Technol. 31 3 954 (2020)

    Article  Google Scholar 

  44. M Ghalambaz, T Grosan and I Pop J. Mol. Liq. 293 111432 (2019)

    Article  Google Scholar 

  45. M S Sadeghi et al. J. Therm. Anal. Calorim. 147 1 (2022)

    Article  Google Scholar 

  46. M A Mansour, T Armaghani, A J Chamkha and A M Rashad Eur. Phys. J. Spec. Top. 228 2619 (2019)

    Article  Google Scholar 

  47. S Hussain, T Armaghani and M Jamal J. Thermophys. Heat Trans. 34 203 (2020)

    Article  Google Scholar 

  48. K Ayoubi Ayoubloo, M Ghalambaz, T Armaghani, A Noghrehabadi and A J Chamkha Int. J. Numer. Methods Heat Fluid Flow 30 1096 (2020)

    Article  Google Scholar 

  49. A I Alsabery, T Armaghani, A J Chamkha, M A Sadiq and I Hashim Int. J. Numer. Methods Heat Fluid Flow 29 1272 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali J. Chamkha.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangadhar, K., Prameela, M. & Chamkha, A.J. Exponential space-dependent heat generation on Powell–Eyring hybrid nanoliquid under nonlinear thermal radiation. Indian J Phys 97, 2461–2473 (2023). https://doi.org/10.1007/s12648-022-02585-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02585-9

Keywords

Navigation