Skip to main content
Log in

Mathematical Modeling and MHD Flow of Micropolar Fluid Toward an Exponential Curved Surface: Heat Analysis via Ohmic Heating and Heat Source/Sink

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The main goal of the current article analyzed the influence of MHD flow of micropolar fluid via exponentially curved stretching surface. Heat transfer analysis is discussed with the impact of thermal radiation and Joule heating. For mathematical model curvilinear (u, v, r and s) is taken for governing flow problem. Viscous dissipation is also considered. Exponential similarity variables are used to transform partial differential equations to ordinary differential system. (ODEs). Numerical techniques have been used to solve the nonlinear ODEs. Effect of various physical variables like material parameter \((K_{1} = 0.1, 0.2, 0.3, 0.4, 0.5)\), radius of curvature (\(\delta = 1,2,3,4,5\)), magnetic parameter (\(M = 0,0.1, 0.2, 0.3, 0.4\)), radiative parameter (\(R_{d} = 1.0,2.0,3.0,4.0,5.0\)), heat generation parameter (Q = 0, 0.1, 0.2, 0.3, 0.4), surface friction, couple stress and surface temperature on the flow of velocity, temperature field and microrotation velocity has been examined through graphs. A good agreement of the present work has been noticed with a previous published result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

(u, v):

Velocity vector

(r, s):

Curvilinear coordinates

\(p,R\) :

Pressure, radius of sheet

\(T, T_{w} , T_{\infty }\) :

Temperature of fluid, sheet temperature and ambient temperature

\(B_{0}\) :

Magnetic strength field

\(\mu ,\nu\) :

Dynamic viscosity, kinematic viscosity

\(P,R_{{{d}}}\) :

Fluid pressure, radiation parameter

\(N,j\) :

Microrotation viscosity, microinertial per unit mass

\({\text{Ec}},k1^{*}\) :

Eckert number, mean absorption coefficient,

\(\sigma^{*} ,c_{{\text{p}}}\) :

Stefan–Boltzmann constant, specific heat

\(g,\beta_{t}\) :

Gravity, volume fraction

\(\xi ,\lambda\) :

Independent variable, mixed convection parameter

\(\delta ,K_{1}\) :

Curvature parameter, material parameter

\(Q,\Pr\) :

Heat generation parameter, Prandtl number

\(k^{*} ,\rho\) :

Vortex viscosity, density

\(k_{0} ,Q_{1}\) :

Thermal conductivity, heat source coefficient

References

  1. Eringen, A.C.: Simple microfluids. Int. J. Eng. Sci. 2, 205–217 (1964)

    Article  MathSciNet  Google Scholar 

  2. Ahmadi, G.: Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. Int. J. Eng. Sci. 14, 639–646 (1976)

    Article  Google Scholar 

  3. Rees, D.A.S.; Bassom, A.P.: The Blasius boundary-layer flow of a micropolar fluid. Int. J. Eng. Sci. 34, 113–124 (1996)

    Article  MathSciNet  Google Scholar 

  4. Sajid, M.; Ali, N.; Javed, T.; Abbas, Z.: Stretching a curved surface in a viscous fluid. Chin. Phys. Lett. 27, 024703 (2010)

    Article  Google Scholar 

  5. Rosali, H.; Ishak, A.; Pop, I.: Micropolar fluid flow towards a stretching/shrinking sheet in a porous medium with suction. Int. Commun. Heat Mass 39, 826–829 (2012)

    Article  Google Scholar 

  6. Abbas, Z.; Naveed, M.; Sajid, M.: Heat transfer analysis for stretching flow over a curved surface with magnetic field. J. Eng. Thermophys. 22, 337–345 (2013)

    Article  Google Scholar 

  7. Rashidi, M.M.; Rostami, B.; Freidoonimehr, N.; Abbasbandy, S.: Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects. Ain Shams Eng. J. 5, 901–912 (2014)

    Article  Google Scholar 

  8. Rosca, N.C.; Pop, I.: Unsteady boundary layer flow over a permeable curved stretching/shrinking surface. Eur. J. Mech. B/Fluids 51, 61–67 (2015)

    Article  MathSciNet  Google Scholar 

  9. Hafidzuddin, E.H.; Nazar, R.; Arifin, N.M.; Pop, I.: Boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity. J. Appl. Fluid. Mech. 9, 2025–2036 (2016)

    Article  Google Scholar 

  10. Hayat, T.; Imtiaz, M.; Alsaedi, A.: Melting heat transfer in the MHD flow of Cu-water nanofluid with viscous dissipation and Joule heating. Adv. Powder Tech. 27, 1301–1308 (2016)

    Article  Google Scholar 

  11. Babu, H.; Narayana, P.V.S.: Joule heating effects on MHD mixed convection of a Jeffrey fluid over a stretching sheet with power law heat flux: a numerical study. J. Magn. Magn. Mater. 412, 185–193 (2016)

    Article  Google Scholar 

  12. Sheikholeslami, M.; Hayat, T.; Alsaedi, A.: MHD free convection of Al2O3—water nanofluid considering thermal radiation: a numerical study. Int. J. Heat Mass Transf. 96, 513–524 (2016)

    Article  Google Scholar 

  13. Hayat, T.; Sajjad, M.; Ellahi, R.; Alsaedi, A.; Muhammad, T.: Homogeneous-heterogeneous reactions in MHD flow of micropolar fluid by a curved stretching surface. J. Mol. Liq. 240, 209–220 (2017)

    Article  Google Scholar 

  14. Hayat, T.; Aziz, A.; Muhammad, T.; Alsaedi, A.: Numerical study for nanofluid flow due to a nonlinear curved stretching surface with convective heat and mass conditions. Results Phys. 7, 3100–3106 (2017)

    Article  Google Scholar 

  15. Okechi, N.F.; Jalil, M.; Asghar, S.: Flow of viscous fluid along an exponentially stretching curved surface. Results Phys. 7, 2851–2854 (2017)

    Article  Google Scholar 

  16. Siddiqa, S.; Faryad, A.; Begum, N.; Hossain, M.A.; Gorla, R.S.R.: Periodic magnetohydrodynamic natural convection flow of a micropolar fluid with radiation. Int. J. Thermal Sci. 111, 215–222 (2017)

    Article  Google Scholar 

  17. Khan, M.I.; Waqas, M.; Hayat, T.; Alsaedi, A.: A comparative study of Casson fluid with homogeneous-heterogeneous reactions. J. Colloid Interface Sci. 498, 85–90 (2017)

    Article  Google Scholar 

  18. Sheikholeslami, M.; Khan, M.I.; Chu, Y.M.; Kadry, S.; Khan, W.A.: CVFEM based numerical investigation and mathematical modeling of surface dependent magnetized copper-oxide nanofluid flow using new model of porous space. Numer. Methods Partial Differ. Equ. (2020). https://doi.org/10.1002/num.22592,InPress

    Article  Google Scholar 

  19. Fatunmbi, E.O.; Fenuga, O.J.: Heat and mass transfer of a chemically reacting MHD micropolar fluid flow over an exponentially stretching sheet with slip effects. Phys. Sci. Int. J. 18, 1–15 (2018)

    Article  Google Scholar 

  20. Hayat, T.; Haider, F.; Muhammad, T.; Alsaedi, A.: Numerical study for Darcy-Forchheimer flow of nanofluid due to an exponentially stretching curved surface. Results Phys. 8, 764–771 (2018)

    Article  Google Scholar 

  21. Naveed, M.; Abbas, Z.; Sajid, M.: Hydromagnetic flow over an unsteady curved stretching surface. Eng. Sci. Technol. Int. J. 19(2), 841–845 (2016)

    Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 11871202, 61673169, 11701176, 11626101, 11601485).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ming Chu.

Appendices

Appendix A

\(A_{1} = \frac{2}{\xi + \delta }, \)

\(A_{2} = - \frac{1}{{\left( {\xi + \delta } \right)^{2} }} - \frac{{M^{2} }}{{1 + K_{1} }},\)

\(A_{3} = \frac{1}{{\left( {\xi + \delta } \right)^{3} }} - \frac{{M^{2} }}{{\left( {\xi + \delta } \right)\left( {1 + K_{1} } \right)}},\)

\(A_{4} = \frac{\delta }{{\left( {\xi + \delta } \right)\left( {1 + K_{1} } \right)}},\)

\(A_{5} = \frac{\delta }{{\left( {\xi + \delta } \right)^{2} \left( {1 + K_{1} } \right)}},\)

\(A_{6} = - \frac{\delta }{{\left( {\xi + \delta } \right)^{3} \left( {1 + K_{1} } \right)}},\)

\(A_{7} = - \frac{3\delta }{{\left( {\xi + \delta } \right)^{2} \left( {1 + K_{1} } \right)}},\)

\(A_{8} = - \frac{3\delta }{{\left( {\xi + \delta } \right)\left( {1 + K_{1} } \right)}},\)

\(A_{9} = - \frac{{K_{1} }}{{1 + K_{1} }},\)

\(A_{10} = - \frac{{K_{1} }}{{\left( {\xi + \delta } \right)\left( {1 + K_{1} } \right)}},\)

\(A_{11} = \lambda\)

\(B_{1} = \frac{1}{{\left( {\xi + \delta } \right)}},\)

\(B_{2} = - \frac{{2K_{1} }}{{\left( {1 + \frac{{K_{1} }}{2}} \right)}},\)

\(B_{3} = - \frac{{K_{1} }}{{\left( {1 + \frac{{K_{1} }}{2}} \right)}},\)

\(B_{4} = - \frac{{K_{1} }}{{\left( {\xi + \delta } \right)\left( {1 + \frac{{K_{1} }}{2}} \right)}},\)

\(B_{5} = \frac{\delta }{{\left( {\xi + \delta } \right)\left( {1 + \frac{{K_{1} }}{2}} \right)}},\)

\(B_{6} = - \frac{3\delta }{{2\left( {\xi + \delta } \right)\left( {1 + \frac{{K_{1} }}{2}} \right)}},\)

\(B_{7} = \frac{\delta \Pr }{{\xi + \delta }},\)

\(B_{8} = - \frac{2\delta \Pr }{{\xi + \delta }},\)

\(B_{9} = \Pr {\text{Ec}},\)

\(B_{10} = - \frac{{2\Pr {\text{Ec}}}}{\xi + \delta },\)

\(B_{11} = \Pr {\text{Ec}}M\left( {\xi + \delta } \right),\)

\(B_{12} = \Pr Q,\)

\(B_{13} = \frac{\Pr EC}{{\left( {\xi + \delta } \right)^{2} }}\)

Appendix B

Linearize system subject to Newton’s quasi-linearization approach (NQLA)

$$ f_{j}^{{\left( {k + 1} \right)}} = f_{j}^{\left( k \right)} + \delta f_{j}^{\left( k \right)} , u_{j}^{{\left( {k + 1} \right)}} = u_{j}^{\left( k \right)} + \delta u_{j}^{\left( k \right)} , v_{j}^{{\left( {k + 1} \right)}} = v_{j}^{\left( k \right)} + \delta v_{j}^{{\left( {k + 1} \right)}} , w_{j}^{{\left( {k + 1} \right)}} = w_{j}^{\left( k \right)} + \delta w_{j}^{\left( k \right)} , g_{j}^{{\left( {k + 1} \right)}} = g_{j}^{\left( k \right)} + \delta g_{j}^{\left( k \right)} , p_{j}^{{\left( {k + 1} \right)}} = p_{j}^{\left( k \right)} + \delta p_{j}^{\left( k \right)} , \theta_{j}^{{\left( {k + 1} \right)}} = \theta_{j}^{\left( k \right)} + \delta \theta_{j}^{\left( k \right)} , q_{j}^{{\left( {k + 1} \right)}} = q_{j}^{\left( k \right)} + \delta q_{j}^{\left( k \right)} . $$
(i)
$$ \delta f_{j} - \delta f_{j - 1} - \frac{1}{2}h_{j} \left( {\delta u_{j} + \delta u_{j - 1} } \right) = \left( {r_{1} } \right)_{{j - \frac{1}{2}}} , $$
(ii)
$$ \delta u_{j} - \delta u_{j - 1} - \frac{1}{2}h_{j} \left( {\delta v_{j} + \delta v_{j - 1} } \right) = \left( {r_{2} } \right)_{{j - \frac{1}{2}}} , $$
(iii)
$$ \delta v_{j} - \delta v_{j - 1} - \frac{1}{2}h_{j} \left( {\delta w_{j} + \delta w_{j - 1} } \right) = \left( {r_{3} } \right)_{{j - \frac{1}{2}}} , $$
(iv)
$$ \delta g_{j} - \delta g_{j - 1} - \frac{1}{2}h_{j} \left( {\delta p_{j} + \delta p_{j - 1} } \right) = \left( {r_{4} } \right)_{{j - \frac{1}{2}}} , $$
(v)
$$ \delta \theta_{j} - \delta \theta_{j - 1} - \frac{1}{2}h_{j} \left( {\delta q_{j} + \delta q_{j - 1} } \right) = \left( {r_{5} } \right)_{{j - \frac{1}{2}}} , $$
(vi)
$$ \left( {\alpha_{1} } \right)_{j} \delta v_{j} + \left( {\alpha_{2} } \right)_{j} \delta v_{j - 1} + \left( {\alpha_{3} } \right)_{j} \delta f_{j + } \left( {\alpha_{4} } \right)_{j} \delta f_{j - 1} + \left( {\alpha_{5} } \right)_{j} \delta u_{j} + \left( {\alpha_{6} } \right)_{j} \delta u_{j - 1} + \left( {\alpha_{7} } \right)_{j} \delta w_{j} + \left( {\alpha_{8} } \right)_{j} \delta w_{j - 1} + \left( {\alpha_{9} } \right)_{j} \delta p_{j} + \left( {\alpha_{10} } \right)_{j} \delta p_{j - 1} + \left( {\alpha_{11} } \right)_{j} \delta q_{j} + \left( {\alpha_{12} } \right)_{j} \delta q_{j - 1} = \left( {r_{6} } \right)_{{j - \frac{1}{2}}} , $$
(vii)
$$ \left( {\alpha_{21} } \right)_{j} \delta f_{j} + \left( {\alpha_{22} } \right)_{j} \delta f_{j - 1} + \left( {\alpha_{23} } \right)_{j} \delta u_{j + } \left( {\alpha_{24} } \right)_{j} \delta u_{j - 1} + \left( {\alpha_{25} } \right)_{j} \delta g_{j} + \left( {\alpha_{26} } \right)_{j} \delta g_{j - 1} + \left( {\alpha_{27} } \right)_{j} \delta v_{j} + \left( {\alpha_{28} } \right)_{j} \delta v_{j - 1} + \left( {\alpha_{29} } \right)_{j} \delta p_{j} + \left( {\alpha_{30} } \right)_{j} \delta p_{j - 1} = \left( {r_{7} } \right)_{{j - \frac{1}{2}}} , $$
(viii)
$$ \left( {\alpha_{31} } \right)_{j} \delta f_{j} + \left( {\alpha_{32} } \right)_{j} \delta f_{j - 1} + \left( {\alpha_{33} } \right)_{j} \delta u_{j + } \left( {\alpha_{34} } \right)_{j} \delta u_{j - 1} + \left( {\alpha_{35} } \right)_{j} \delta \theta_{j} + \left( {\alpha_{36} } \right)_{j} \delta \theta_{j - 1} + \left( {\alpha_{37} } \right)_{j} \delta v_{j} + \left( {\alpha_{38} } \right)_{j} \delta v_{j - 1} + \left( {\alpha_{39} } \right)_{j} \delta q_{j} + \left( {\alpha_{40} } \right)_{j} \delta q_{j - 1} + \left( {\alpha_{41} } \right)_{j} \delta u_{j} + \left( {\alpha_{42} } \right)_{j} \delta u_{j - 1} + \left( {\alpha_{43} } \right)_{j} \delta \theta_{j} + \left( {\alpha_{44} } \right)_{j} \delta \theta_{j - 1} = \left( {r_{8} } \right)_{{j - \frac{1}{2}}} . $$
(ix)

with

$$ \delta f_{1} = 0, \delta u_{1} = 0, \delta g_{1} = 0, \delta \theta_{1} = 0, \delta v_{J} = 0, \delta w_{J} = 0, \delta g_{J} = 0, \delta \theta_{J} = 0, $$
(x)

where

$$ \left( {r_{1} } \right)_{{j - \frac{1}{2}}} = f_{j - 1} - f_{j} + h_{j} u_{{j - \frac{1}{2}}} , $$
(xi)
$$ \left( {r_{2} } \right)_{{j - \frac{1}{2}}} = u_{j - 1} - u_{j} + h_{j} v_{{j - \frac{1}{2}}} , $$
(xii)
$$ \left( {r_{3} } \right)_{{j - \frac{1}{2}}} = v_{j - 1} - v_{j} + h_{j} w_{{j - \frac{1}{2}}} , $$
( xiii)
$$ \left( {r_{4} } \right)_{{j - \frac{1}{2}}} = g_{j - 1} - g_{j} + h_{j} p_{{j - \frac{1}{2}}} , $$
( xiv)
$$ \left( {r_{5} } \right)_{{j - \frac{1}{2}}} = \theta_{j - 1} - \theta_{j} + h_{j} q_{{j - \frac{1}{2}}} , $$
$$ \begin{aligned} \left( {r_{6} } \right)_{{j - \frac{1}{2}}} & = M_{{{{j}} - \frac{1}{2}}}^{{{{i}} - 1}} - \left\{ {(w_{j} - w_{j - 1} )h_{j}^{ - 1} + A_{1} w_{{j - \frac{1}{2}}} + A_{2} v_{{j - \frac{1}{2}}} + A_{3} u_{{j - \frac{1}{2}}} + A_{4} (fw)_{{j - \frac{1}{2}}} + A_{5} (fv)_{{j - \frac{1}{2}}} } \right. \\ & \quad \left. { + A_{6} (fu)_{{j - \frac{1}{2}}} + A_{7} u_{{j - \frac{1}{2}}}^{2} + A_{8} (uv)_{{j - \frac{1}{2}}} + A_{9} \left( {p_{j} - p_{j - 1} } \right)h_{j} + A_{10} p_{{j - \frac{1}{2}}} + A_{11} q_{{j - \frac{1}{2}}} } \right\}, \\ \end{aligned} $$
(xv)
$$ \left( {r_{7} } \right)_{{j - \frac{1}{2}}} = N_{{{{j}} - \frac{1}{2}}}^{{{{i}} - 1}} - \left\{ {\left( {p_{j} - p_{j - 1 } } \right)h_{j} + B_{1} p_{{j - \frac{1}{2}}} + B_{2} g_{{j - \frac{1}{2}}} + B_{3} v_{{j - \frac{1}{2}}} + B_{4} u_{{j - \frac{1}{2}}} + B_{5} (fp)_{{j - \frac{1}{2}}} + B_{6} (ug)_{{j - \frac{1}{2}}} } \right\}, $$
(xvi)
$$ \left( {r_{8} } \right)_{{j - \frac{1}{2}}} = S_{{{{j}} - \frac{1}{2}}}^{{{{i}} - 1}} - \left\{ {\left( {q_{j} - q_{j - 1 } } \right)h_{j} + B_{1} q_{{j - \frac{1}{2}}} + B_{7} (fq)_{{j - \frac{1}{2}}} + B_{8} (u\theta )_{{j - \frac{1}{2}}} + B_{9} v_{{j - \frac{1}{2}}}^{2} + B_{10} uv_{{j - \frac{1}{2}}} + B_{11} u_{{j - \frac{1}{2}}}^{2} + B_{11} u_{{j - \frac{1}{2}}}^{2} + B_{12} (\theta )_{{j - \frac{1}{2}}} } \right\}, $$
(xvii)

where the coefficients are mathematically addressed as

$$ \left( {\alpha_{1} } \right)_{j} = \left( {\alpha_{2} } \right)_{j} = \frac{{A_{2} }}{2} + \frac{{A_{5} }}{2}f_{{j - \frac{1}{2}}} + \frac{{A_{8} }}{2}u_{{j - \frac{1}{2}}} , $$
$$ \left( {\alpha_{3} } \right)_{j} = \left( {\alpha_{4} } \right)_{j} = \frac{{A_{4} }}{2}w_{{j - \frac{1}{2}}} + \frac{{A_{5} }}{2}v_{{j - \frac{1}{2}}} + \frac{{A_{6} }}{2}u_{{j - \frac{1}{2}}} , $$
$$ \left( {\alpha_{5} } \right)_{j} = \left( {\alpha_{6} } \right)_{j} = \frac{{A_{3} }}{2} + \frac{{A_{6} }}{2}f_{{j - \frac{1}{2}}} + A_{7} u_{{j - \frac{1}{2}}} + \frac{{A_{8} }}{2}v_{{j - \frac{1}{2}}} , $$
$$ \left( {\alpha_{7} } \right)_{j} = \frac{1}{{h_{j} }} + \frac{1}{2}A_{1} + \frac{1}{2}A_{4} f_{{j - \frac{1}{2}}} , $$
$$ \left( {\alpha_{8} } \right)_{j} = - \frac{1}{{h_{j} }} + \frac{1}{2}A_{1} + \frac{1}{2}A_{4} f_{{j - \frac{1}{2}}} , $$
$$ \left( {\alpha_{9} } \right)_{j} = \frac{{A_{9} }}{{h_{j} }} + \frac{{A_{10} }}{2} ,\;\left( {\alpha_{10} } \right)_{j} = - \frac{{A_{9} }}{{h_{j} }} + \frac{{A_{10} }}{2}, $$
$$ \left( {\alpha_{11} } \right)_{j} = \left( {\alpha_{12} } \right)_{j} = A_{11} ,\; \left( {\alpha_{21} } \right)_{j} = \left( {\alpha_{22} } \right)_{j} = \frac{{B_{5} }}{2}p_{{j - \frac{1}{2}}} ,\;\left( {\alpha_{23} } \right)_{j} = \left( {\alpha_{24} } \right)_{j} = \frac{{B_{4} }}{4} + \frac{{B_{6} }}{2}g_{{j - \frac{1}{2}}} , $$
$$ \left( {\alpha_{25} } \right)_{j} = \left( {\alpha_{26} } \right)_{j} = \frac{{B_{2} }}{2} + \frac{{B_{6} }}{2}u_{{j - \frac{1}{2}}} , \left( {\alpha_{27} } \right)_{j} = \left( {\alpha_{28} } \right)_{j} = \frac{{B_{3} }}{2}, $$
$$ \left( {\alpha_{29} } \right)_{j} = \frac{1}{{h_{j} }} + \frac{{B_{1} }}{2} + \frac{{B_{5} }}{2}f_{{j - \frac{1}{2}}} ,\;\left( {\alpha_{30} } \right)_{j} = - \frac{1}{{h_{j} }} + \frac{{B_{1} }}{2} + \frac{{B_{5} }}{2}f_{{j - \frac{1}{2}}} , $$
$$ \left( {\alpha_{31} } \right)_{j} = \left( {\alpha_{32} } \right)_{j} = \frac{{B_{7} }}{2}q_{{j - \frac{1}{2}}} ,\;\left( {\alpha_{33} } \right)_{j} = \left( {\alpha_{34} } \right)_{j} = \frac{{B_{8} }}{2}\theta_{{j - \frac{1}{2}}} + \frac{{B_{10} }}{2}v_{{j - \frac{1}{2}}} + B_{11} u_{{j - \frac{1}{2}}} , $$
$$ \left( {\alpha_{35} } \right)_{j} = \left( {\alpha_{36} } \right)_{j} = \frac{{B_{8} }}{2}u_{{j - \frac{1}{2}}} ,\;\left( {\alpha_{37} } \right)_{j} = \left( {\alpha_{38} } \right)_{j} = \frac{{B_{9} }}{2}v_{{j - \frac{1}{2} }} + \frac{{B_{10} }}{2}u_{{j - \frac{1}{2}}} , $$
$$ \left( {\alpha_{39} } \right)_{j} = \frac{1}{{h_{j} }} + \frac{{B_{1} }}{2} + \frac{{B_{7} }}{2}f_{{j - \frac{1}{2}}} ,\;\left( {\alpha_{40} } \right)_{j} = - \frac{1}{{h_{j} }} + \frac{{B_{1} }}{2} + \frac{{B_{7} }}{2}f_{{j - \frac{1}{2}}} , $$
$$ \left( {\alpha_{41} } \right)_{j} = A_{11} (u)_{{j - \frac{1}{2}}} , \; \left( {\alpha_{42} } \right)_{j} = - (u)_{{j - \frac{1}{2}}} B_{11} $$
$$ \left( {\alpha_{43} } \right)_{j} = B_{12} (\theta )_{{j - \frac{1}{2}}} ,\;\left( {\alpha_{44} } \right)_{j} = - B_{12} (\theta )_{{j - \frac{1}{2}}} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, WM., Khan, M.I., Shah, F. et al. Mathematical Modeling and MHD Flow of Micropolar Fluid Toward an Exponential Curved Surface: Heat Analysis via Ohmic Heating and Heat Source/Sink. Arab J Sci Eng 47, 867–878 (2022). https://doi.org/10.1007/s13369-021-05673-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05673-w

Keywords

Navigation