Skip to main content
Log in

Tidal properties of D-dimensional Tangherlini black holes

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The aim of this paper is to investigate tidal forces in multidimensional spherically simmetric spacetimes. We consider geodesic deviation equation in Schwarzschild–Tangherlini metric and its electrically charged version. We show that these equations can be solved explicity for radial geodesics as quadratures in spaces of any dimension. In the cases of five, six and seven dimensional spaces, these solutions can be represented in terms of elliptic integrals. For spacetimes of higher dimension asymptotics of the solution are found instead. We established that the greater the dimension of space is, the stronger the tidal stretch along the radial direction in the vicinity of physical singularity is, whereas the tidal compression in direction transverse to the radial one, does not change in the leading order starting from a certain dimension. Also, in the case of non-radial geodesics, the presence of black hole electric charge does not affect the force of transverse compression in the leading order. Finally, for non-radial geodesics with nonzero angular momentum, the local properties of solutions of geodesic deviation equations in the vicinity of a singularity are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H Fush Ann. Physik 495 231 (1983).

    Article  ADS  Google Scholar 

  2. K Schwarzschild and B Sitzungsbesichte Phys. Math. Klasse 189 (1916)

  3. S L Bazanski and P J Jaranowski Math. Phys. 30 1794 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  4. J P Luminet and J A Marck Mon. Not. R. Astron. Soc. 212 57 (1985).

    Article  ADS  Google Scholar 

  5. V P Vandeev and A N Semenova Eur. Phys. J. Plus 137 185 (2022).

    Article  Google Scholar 

  6. H Reissner Ann. Physik 50 106 (1916).

    Article  ADS  Google Scholar 

  7. G Nordström Proc. Kon. Ned. Akad. Wet. 20 1238 (1918).

    ADS  Google Scholar 

  8. L C B Crispino et al Eur. Phys. J. C 76 168 (2016).

    Article  ADS  Google Scholar 

  9. F Kottler Ann. Physik 56 401 (1918).

    Article  ADS  Google Scholar 

  10. V P Vandeev and A N Semenova Eur. Phys. J. C 81 610 (2021).

    Article  ADS  Google Scholar 

  11. M Cariglia, T Houri, P Krtouš et al Eur. Phys. J. C 78 661 (2018).

    Article  ADS  Google Scholar 

  12. M U Shahzad and A Jawad Eur. Phys. J. C 77 372 (2017).

    Article  ADS  Google Scholar 

  13. V V Kiselev Class. Quant. Grav. 20 1187 (2003).

    Article  ADS  Google Scholar 

  14. H C D Lima Junior, M M Correa, C F B Macedo et al Eur. Phys. J. C 82 479 (2022).

    Article  ADS  Google Scholar 

  15. M Sharif and S Sadiq JETP 153 232 (2018).

    Google Scholar 

  16. H C Lima and L C Crispino Int. J. Mod. Phys. D 29 2041014 (2020).

    Article  ADS  Google Scholar 

  17. A Goel, R Maity, P Roy and T Sarkar Phys. Rev. D 91 104029 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  18. S Madan and P Bambhaniya, https://doi.org/10.48550/arXiv.2201.13163.

  19. Soon-Tae Hong et al Phys. Lett. B 881 135967 (2020).

    Article  Google Scholar 

  20. Jing Li et al Eur. Phys. J. C 81 590 (2021).

    Article  ADS  Google Scholar 

  21. J Liu, S Chen and J Jing Chin. Phys. C 46 105104 (2022).

    Article  ADS  Google Scholar 

  22. R P Kerr Phys. Rev. Lett. 11 237 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  23. H C Lima and L C Crispino Eur. Phys. J. Plus 135 334 (2020).

    Article  Google Scholar 

  24. R Uniyal Eur. Phys. J. C 82 567 (2022).

    Article  ADS  Google Scholar 

  25. C Chicone, B Mashhoon and B Punsly Int. J. Mod. Phys. D 13 945 (2004).

    Article  ADS  Google Scholar 

  26. C Chicone and B Mashhoon Ann. Phys. 14 290 (2005).

    Article  MathSciNet  Google Scholar 

  27. D Bini, C Chicone and B Mashhoon Phys. Rev. D 95 104029 (2017).

    Article  ADS  Google Scholar 

  28. M F Shirokov Gen. Rel. Grav. 4 131 (1973).

    Article  ADS  Google Scholar 

  29. A Nduka Gen. Rel. Grav. 8 347 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  30. E Y Melkumova et al Sov. Phys. J. 33 349 (1990).

    Article  Google Scholar 

  31. D Philipp, V Perlick, C Lammerzahl and K Deshpande IEEE Metrol. Aerosp. (MetroAeroSp.) 2015 198 (2015).

    Article  Google Scholar 

  32. F R Tangherlini Nuovo Cim. 27 636 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  33. C W Misner, K S Thorne and J A Wheeler Gravitation (San Francisco: W.H. Freeman) (1973)

  34. D E Hodgkinson Gen. Rel. Grav. 3 351 (1972).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Yuri Viktorovich Pavlov and Polina Igorevna Kakin for meaningful discussions and useful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Vandeev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Fuchs’ equations and Frobenius method

Second-order differential equation for a complex variable function y(z)

$$\begin{aligned} y''(z)+p(z)y'(z)+q(z)y(z)=0 \end{aligned}$$
(80)

has a regular singular point at \(z=z_0\), if the coefficients p(z), q(z) have pole at \(z=z_0\) not higher than the first and second order, respectively. In other words, the coefficients are decomposed into Laurent series as follows:

$$\begin{aligned} p(z)= & \sum _{k=-1}^{\infty }a_k(z-z_0)^{k}, \end{aligned}$$
(81a)
$$\begin{aligned} q(z)= & \sum _{k=-2}^{\infty }b_k(z-z_0)^{k}. \end{aligned}$$
(81b)

In the vicinity of a regular singular point \(z=z_0\) two linearly independent solutions of Eq. (80) can be found using the generalized series

$$\begin{aligned} y_1(z)= & (z-z_0)^{\zeta _1}\sum _{k=0}^{\infty }c_k(z-z_0)^k, \end{aligned}$$
(82a)
$$\begin{aligned} y_2(z)= & (z-z_0)^{\zeta _2}\sum _{k=0}^{\infty }d_k(z-z_0)^k, \end{aligned}$$
(82b)

where \(\zeta _1\) and \(\zeta _2\) are roots of quadratic equation

$$\begin{aligned} \zeta (\zeta -1)+a_{-1}\zeta +b_{-2}=0. \end{aligned}$$
(83)

If difference \(\zeta _1-\zeta _2\) is not integer, then both solutions of Eq. (80) coincide with the power series (82), but if difference \(\zeta _1~-~\zeta _2\) is positive integer, then the first solution for higher \(\zeta _1\) remains the same (82a) while the second linearly independent solution has another form

$$\begin{aligned} y_2=(z-z_0)^{\zeta _2}\sum _{k=0}^{\infty }d_k(z-z_0)^k+Ay_1(z)\ln (z-z_0). \end{aligned}$$
(84)

Elliptic integrals

The simplest indefinite elliptic integral is the expression

$$\begin{aligned} \int R\left( z,y(z)\right) \textrm{d}z, \end{aligned}$$
(85)

where \(y(z)=\sqrt{a_0+a_1z+a_2z^2+a_3z^3+a_4z^4}\) and R(zy) is rational function of two variables. Any elliptic integral can be brought to the form

$$\begin{aligned} \int R_1(z)\textrm{d}z+\int \frac{R_2(z)}{y(z)}\textrm{d}z, \end{aligned}$$
(86)

where \(R_1(z)\) and \(R_2(z)\) are rational functions of one variable. Linear fractional transformation

$$\begin{aligned} z=\frac{ax+b}{cx+d} \end{aligned}$$
(87)

can turn the second term of (86) into

$$\begin{aligned} \int \frac{\tilde{R}_2(x)}{\tilde{y}(x)}\textrm{d}x, \end{aligned}$$
(88)

where \(\tilde{R}_2(x)\) is another rational function, and \(\tilde{y}(x)\) is reduced to Weierstrass form

$$\begin{aligned} \tilde{y}(x)=\sqrt{4x^3-g_2x-g_3}, \end{aligned}$$
(89)

or Legendre form

$$\begin{aligned} \tilde{y}(x)=\sqrt{\left( 1-x^2\right) \left( 1-k^2x^2\right) }. \end{aligned}$$
(90)

As a result, expression (88) can be represented as a sum of integrals of three kinds.

  • In Weierstrass form integrals of three kinds are

    $$\begin{aligned} J_0(x|g_2,g_3)= & \int \frac{\textrm{d}x}{\sqrt{4x^3-g_2x-g_3}}, \end{aligned}$$
    (91a)
    $$\begin{aligned} J_1(x|g_2,g_3)= & \int \frac{x\textrm{d}x}{\sqrt{4x^3-g_2x-g_3}}, \end{aligned}$$
    (91b)
    $$\begin{aligned} H(x|g_2,g_3)= & \int \frac{\textrm{d}x}{(x-c)\sqrt{4x^3-g_2x-g_3}}. \end{aligned}$$
    (91c)
  • In Legendre form integrals of three kinds are

    $$\begin{aligned} F(x,k)= & \int \frac{\textrm{d}x}{\sqrt{\left( 1-x^2\right) \left( 1-k^2x^2\right) }}, \end{aligned}$$
    (92a)
    $$\begin{aligned} E(x,k)= & \int \sqrt{\frac{1-k^2x^2}{1-x^2}}\textrm{d}x, \end{aligned}$$
    (92b)
    $$\begin{aligned} \Pi (x,k,c)= & \int \frac{\textrm{d}x}{\left( 1-\frac{x^2}{c^2}\right) \sqrt{\left( 1-x^2\right) \left( 1-k^2x^2\right) }}. \end{aligned}$$
    (92c)

Where c is some pole of the function \(\tilde{R}_2(x)\), which can be complex.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandeev, V.P., Semenova, A.N. Tidal properties of D-dimensional Tangherlini black holes. Indian J Phys 97, 1947–1957 (2023). https://doi.org/10.1007/s12648-022-02543-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02543-5

Keywords

Navigation