Skip to main content
Log in

Comparative DFT calculations on Bismuth-based compounds: new connection between optoelectronic properties and 209Bi and 51 V NMR and EFG

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, the structural, optoelectronic, nuclear magnetic resonance (NMR) and electric field gradient (EFG) of the pure BiCaVO5 and substituted by Mg and Cd atoms were studied by the first principle calculation. The generalized gradient approximation (GGA) with including spin–orbit (SO) coupling effects was used to calculate the band gap values. Indirect band gaps values of 3.27, 3.18 and 2.58 eV are calculated for BiMVO5 (M = Ca, Mg and Cd) compounds by GGA + SO, respectively. T he band gap values decrease by including spin–orbit interaction. The obtained results show that the M ions play a key role on the 209Bi and 51 V chemical shifts which confirm the optoelectronic properties. Calculated plasmon energies are 28.76, 22.87 and 22.48 eV for BiMVO5 (M = Ca, Mg and Cd) compounds, respectively. From the EFG spectra’s analysis, it is found that the dominant binding orbitals of BiMgVO5 compound are formed along the z direction at Bi sites with −56.76 × 1021 V/m2. The wide plasmon energy range makes these materials suitable for the high-performance optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S Benmokhtar, A El Jazouli, J P Chammade, P Gravereau, F Guillen and D de Waal J. Solid State. Chem. 177 4175 (2004)

    Article  ADS  Google Scholar 

  2. S Uma, R Bliesner and A W Sleight J. Solid State Sciences 4 329 (2002)

    Article  ADS  Google Scholar 

  3. F Abraham, M F Debreuille-Gresse, G Mairesse and G Nowogrocki J. Solid State Ionics 28–30 529 (1988)

    Article  Google Scholar 

  4. K Cheng, L Chunchun, X Huaicheng, T Ying, S Yihua and F Liang J. American Ceramic Society 102 362 (2019)

    Article  Google Scholar 

  5. A Barros, R Deloncle, J Deschamp and P Boutinaud Optical Materials 36 1724 (2014)

    Article  ADS  Google Scholar 

  6. S E Nunes Journal of Solid State Chemistry 222 12 (2015)

    Article  ADS  Google Scholar 

  7. S Cho Solid State Sciences 17 111 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. A Aliev Physics and Chemistry of Minerals 42 663 (2015)

    Article  ADS  Google Scholar 

  9. G Yang Journal of Materials Science: Materials in Electronics 31 7219 (2020)

    Google Scholar 

  10. H Mizoguchi, W J Marshall, A P Ramirez, A W Sleight and M A Subramanian Journal of Solid State Chemistry 180 3463 (2007)

    Article  ADS  Google Scholar 

  11. Y Huang Optics Express 20 4360 (2012)

    Article  ADS  Google Scholar 

  12. I Radosavljevic, J A K Howard and A W Sleight J. Inorg. Mater 2 543 (2000)

    Article  Google Scholar 

  13. B Bentria, D Benbertal, M B Beucher, R Masse and A Mosset J. Chemical Crystallography 11 33 (2003)

    Google Scholar 

  14. G A de Wijs, R Laskowski, P Blaha, R W A Havenith, G Kresse and M Marsman J. Chem. Phys. 146 064115 (2017)

    Article  ADS  Google Scholar 

  15. P Blaha, K Schwarz and P H Dederichs Phys. Rev. B 37 2792 (1988)

    Article  ADS  Google Scholar 

  16. E Purcell, H Torrey and R Pound Phys. Rev. B 69 37 (1946)

    Article  ADS  Google Scholar 

  17. F Bloch, W Hansen and M Packard Phys. Rev. B 69 127 (1946)

    Article  ADS  Google Scholar 

  18. B Roy. Graduate Theses and Dissertations 14277 (2014)

  19. J J van der Klink and H B Brom Progress in Nuclear Magnetic Resonance Spectroscopy 36 89 (2000)

    Article  Google Scholar 

  20. M Bashi Materials Research Express 6 106314 (2019)

    Article  ADS  Google Scholar 

  21. P Blaha, K Schwarz, F Tran, R Laskowski, G K H Madsen and L D Marks J. Chem. Phys. 152 074101 (2020)

    Article  ADS  Google Scholar 

  22. J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  23. P Blaha, K Schwarz and P Herzig J. Phys. Rev. Lett. 54 1192 (1985)

    Article  ADS  Google Scholar 

  24. B Winkler, P Blaha and K Schwarz American Mineralogist 81 545 (1996)

    Article  ADS  Google Scholar 

  25. P L Bryant and C R Harvell J. Phys. Chem. 103 5246 (1999)

    Article  Google Scholar 

  26. M Iglesias, K Schwarz, P Blaha and D Baldomir J. Phys. Chem. Mineral 28 67 (2001)

    Article  ADS  Google Scholar 

  27. T J Bastow J. Phys. Chem. Phys. Lett. 354 156 (2002)

    Article  ADS  Google Scholar 

  28. S E Ashbrook and D Mckay J. Chem. Commun 52 7186 (2016)

    Article  Google Scholar 

  29. T J Bastow, M I Burgar and C Maunders J. Solid State Communications 122 629 (2002)

    Article  ADS  Google Scholar 

  30. R Siegel, J Hirschinger, D Carlier, M Menetrier and C Delmas J. Solid State Nuclear Magnetic Resonance 23 243 (2003)

    Article  Google Scholar 

  31. T J Bastow J. Chem. Phys. Lett. 380 516 (2003)

    Article  ADS  Google Scholar 

  32. T J Bastow and G W West J. Phys. Condens. Matter 15 8389 (2003)

    Article  ADS  Google Scholar 

  33. P A Thomas, A Baldwin, R Dupree, P Blaha and K Schwarz J. Phys. Chem. B. 108 4324 (2004)

    Article  Google Scholar 

  34. G Silly, C Legein, J Y Buzare and F Calvayrac J. Solid State Nuclear Magnetic Resonance. 25 241 (2004)

    Article  Google Scholar 

  35. B Znou, T Giavani, H Bildsoe, J Skibsted and H J Jakobsen J. Chem. Phys. Lett. 402 133 (2005)

    Article  ADS  Google Scholar 

  36. M R Hansen, G K H Madson, H J Jakobsen and J Skibsted J. Chem. Phys. Lett. 109 1989 (2005)

    Google Scholar 

  37. J B D’ Espinose de Lacaillerie, F Barberson, K V Romanenko, O B Lapina, L Le Polles, R Gautiier and Z Gan. J. Phys. Chem. B 109 14033 (2005)

    Article  Google Scholar 

  38. M Body, G Silly, C Legein, J-Y Buzare, F Calvayrac and P Blaha J. Solid State Chem. 178 3655 (2005)

    Article  ADS  Google Scholar 

  39. K J Ooms, K W Feindel, M J Willans and R E Wasylishen J. Solid State Nuclear Magnetic Resonance 28 125 (2005)

    Article  Google Scholar 

  40. X Rocquefelte and S E Boulfelfel Angew. Chem. Int. Ed. 44 7542 (2005)

    Article  Google Scholar 

  41. S E Ashbrook, L Le Polles, R Gautier, C J Pickard and R I Walton J. Phys. Chem. Chem. Phys. 8 3423 (2006)

    Article  Google Scholar 

  42. M Body, G Silly, C Legein, J-Y Buzare, F Calvayrac and P Blaha J. Chem. Phys. Lett. 8 3423 (2006)

    Google Scholar 

  43. M R Hansen, G K H Madsen, H J Jakobsen and J Skibsred J. Phys. Chem. B 110 5975 (2006)

    Article  Google Scholar 

  44. C Martineau, M Body, C Legein, G Silly, J-Y Buzare and F Fayon Inorg. Chem. 45 10215 (2006)

    Article  Google Scholar 

  45. B Zhou, B L Sherriff, J S Hartman and G Wy J. American Mineralogist. 92 34 (2007)

    Article  ADS  Google Scholar 

  46. X Rocquefelte, F Clabau, M Faris, P Deniard and T Le Mercier Inorg. Chem. 46 5456 (2007)

    Article  Google Scholar 

  47. R Laskowski and P Blaha J. Phys. Chem. 119 19390 (2021)

    Google Scholar 

  48. R Bjornson, H Fruchtl and M Buhl J. Phys. Chem. Chem. Phys. 13 619 (2011)

    Article  Google Scholar 

  49. M Bashi and H A Rahnamaye Magnetic Resonance in Chemistry 58 223 (2020)

    Article  Google Scholar 

  50. M Bashi Solid State Nuclear Magnetic Resonance 82 10 (2017)

    Article  Google Scholar 

  51. M Bashi J. Mol. Struct. 1148 223 (2017)

    Article  ADS  Google Scholar 

  52. D J Cirilo-Lombardo Philosophical Magazine 95 1007 (2015)

    Article  ADS  Google Scholar 

  53. J Olchowka, M Colmont, H Kabbour and O Mentre J. Alloys and Compounds 709 373 (2017)

    Article  Google Scholar 

  54. A Bhim, Sh Sasmal, J Gopalakrishnan and S Natarajan. Chemistry–An Asian Journal 15 3104 (2020)

    Article  Google Scholar 

  55. J Galy, R Enjalbert and G Jugil J. Solid State Chemistry 47 143 (1983)

    Article  ADS  Google Scholar 

  56. C Diaz, G Barrera, M Segovia, M L Valenzuela, M Osiak and C Dwyer J. Nanomaterials Vol. 105157 (2015)

Download references

Acknowledgements

We thank Prof. Blaha from Vienna University of Technology, Austria, for his help in the use of Wien2k.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Rahnamaye Aliabad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri-Shookoh, F., Aliabad, H.A.R. & Tavakoli-Anbaran, H. Comparative DFT calculations on Bismuth-based compounds: new connection between optoelectronic properties and 209Bi and 51 V NMR and EFG. Indian J Phys 97, 797–807 (2023). https://doi.org/10.1007/s12648-022-02458-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02458-1

Keywords

Navigation