Skip to main content
Log in

Investigation of optoelectronic properties of BiMO3/M = TM, within the full potential-linearized augmented plane wave method

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Electronic and Optical properties of BiMO3 with M = Zinc, Vanadium, Manganese, Cobalt, and Fe were studied by first principles calculations using the density functional theory. We investigated optical reflectivity, optical absorption, band structure, and Total/Partial density of state using the full potential-linearized augmented plane wave method with the generalized gradient approximation and modified beak Johnson approximation (mBJ), implemented in the Wien2k package. With the mBJ approximation the gap appears for BiCoO3 and BiFeO3, it is equal to 1.7 and 2.6 eV respectively, which is in good agreement with experimental results. While BiMO3 (M = Zn, V, Mn) presents a metallic behavior. We investigated that the optical absorption and the reflectivity is stable in visible light for the case of BiCoO3 and BiFeO3. This study predict also that the reflectivity and the optical absorption of BiMO3/M = Mn, V, Zn is high in Ultraviolet region. The appearance of a significant magnetic moment for the case of Fe and Co with considerable gap is an excellent result that can be exploited in different optoelectronic and magneto-optic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Belik, A.A., Iikubo, S., Kodama, K., Igawa, N., Shamoto, S., Niitaka, S., Azuma, M., Shimakawa, Y., Takano, M., Izumi, F., Takayama-Muromachi, E.: neutron powder diffraction study on the crystal and magnetic structures of BiCoO3. Chem. Mater. 18, 798–803 (2006)

    Article  Google Scholar 

  • Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2 k, an augmented plane wave + local orbitals program for calculating crystal properties. Techn. Universität Wien, Wien (2001)

    Google Scholar 

  • Cai, M.Q., Lui, J.C., Yang, G.W., Cao, Y.L., Tan, X., Chen, X.Y., Wang, Y.G., Wang, L.L., Hu, W.Y.: First-principles study of structural, electronic, and multiferroic properties in BiCoO3. J. Chem. Phys. 126, 154708-1–154708-6 (2007)

    ADS  Google Scholar 

  • Chen, P., Podraza, N.J., Xu, X.S., Melville, A., Vlahos, E., Gopalan, V., Ramesh, R., Schlom, D.G., Musfeldt, J.L.: Optical properties of quasi-tetragonal BiFeO3 thin films. Appl. Phys. Lett. 96, 131907-1–131907-3 (2010)

    ADS  Google Scholar 

  • Cheong, S.W., Mostovoy, M.: Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6(1), 13–20 (2007)

    Article  ADS  Google Scholar 

  • Dong, H., et al.: Optical anisotropy and blue-shift phenomenon in tetragonal BiFeO3. J. Phys. D Appl. Phys. 46, 135102-1–135102-4 (2013)

    Article  ADS  Google Scholar 

  • Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    Article  ADS  Google Scholar 

  • Faqir, H., Chiba, H., Kikuchi, M., Syono, Y., Mansori, M., Satre, P., Sebaoun, A.: High-temperature XRD and DTA studies of BiMnO3 perovskite. J. Solid State Chem. 142, 113–119 (1999)

    Article  ADS  Google Scholar 

  • Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38, R123–R152 (2005)

    Article  ADS  Google Scholar 

  • Kanungo, S., Saha-Dasgupta, T.: Pressure-driven changes in electronic structure of BiCoO3. Phys. Rev. B 83, 104104-1–104104-6 (2011)

    Article  ADS  Google Scholar 

  • Katsura, H., Nagaosa, N., Balatsky, A.V.: Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205-1–057205-4 (2005)

    Article  ADS  Google Scholar 

  • Kleemann, W., Kreisel, J.: Current progress in multiferroics and magnetoelectrics. Phase Transit. 79(12), 945–946 (2006)

    Article  Google Scholar 

  • Mathur, N., Bibes, M.: Multiferroic and magnetoelectric epitaxial thin films and devices. Philos. Mag. 87(3–4), 139–140 (2007)

    Google Scholar 

  • McLeod, J.A., Pchelkina, Z.V., Finkelstein, L.D., Kurmaev, E.Z., Wilks, R.G., Moewes, A., Solovyev, I.V., Belik, A.A., Takayama-Muromachi, E.: Electronic structure of BiMO3 multiferroics and related oxides. Phys. Rev. B 81, 144103-1–144103-10 (2010)

    ADS  Google Scholar 

  • Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  • Sergienko, I.A., Dagotto, E.: Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Phys. Rev. B 73, 094434-1–094434-5 (2006)

    Article  ADS  Google Scholar 

  • Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401-1–226401-4 (2009)  

    ADS  Google Scholar 

  • Wooten, F.: Optical Properties of Solids. Academic Press, New York (1972)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. P. Blaha and Mr. K. Schwarz for the WIEN2k code that we used to realize this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Abbassi or H. Ez-Zahraouy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbassi, A., Arejdal, M., Ez-Zahraouy, H. et al. Investigation of optoelectronic properties of BiMO3/M = TM, within the full potential-linearized augmented plane wave method. Opt Quant Electron 48, 38 (2016). https://doi.org/10.1007/s11082-015-0331-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-015-0331-y

Keywords

Navigation