Skip to main content
Log in

Numerical investigation of guiding of Gaussian laser pulse in plasma channel with radial variation in presence of Kerr effect by Runge–Kutta and extrapolation methods

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, guiding of Gaussian laser pulse in plasma channel in the presence of Kerr effect is studied numerically. We assume that the plasma channel has radial variation. We obtain matched condition to guide intense laser pulse through plasma channel in presence of Kerr effect. Using the SDE method, four coupled equations for the pulse amplitude, phase, spot size and wave front curvature will be derived. We apply two numerical methods for solving these equations, Runge–Kutta and extrapolation methods. We give the functional form of the nonlinear initial value problem and obtain some properties about the convergence of the methods. Since these are pure mathematical considerations, they are mentioned in Appendix section. The solutions obtained by the methods are compared together and we see that the solutions are the same. Hence, the proposed methods are applicable and have the sufficient accuracy for the current system of equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H Hora, G Miley, P Lalousis and S Moustaizis Plasma Sci. 42 640 (2014)

    Article  Google Scholar 

  2. P Y Chang et al Phys. Rev. Lett. 107 035006 (2011)

    Article  Google Scholar 

  3. H A Salih Plasma Sci. 31 324 (2003)

    Article  Google Scholar 

  4. S Chen and A Maksimchuk Rev. Lett. 84 5528 (2000)

    Article  Google Scholar 

  5. M Schnell et al Nature Commun. 4 2421 (2013)

    Article  Google Scholar 

  6. W D Kimura et al IEEE Trans. Plasma Sci. 33 3 (2005)

    Article  Google Scholar 

  7. H Daido Rep. Prog. Phys. 65 1513 (2002)

    Article  Google Scholar 

  8. C L Miller et al IEEE Trans. Plasma Sci. 40 2658 (2012)

    Article  Google Scholar 

  9. E Esarey, P Sprangle, J Krall and A Ting IEEE J. Quantum Electron 33 1879 (1997)

    Article  Google Scholar 

  10. W P Leemans et al Phys. Rev. A 46 1091 (1992)

    Article  Google Scholar 

  11. A Zigler, Y Ehrlich and C Cohen J. Opt. Soc. Am. B 13 68 (1996)

    Article  Google Scholar 

  12. K Krushelmick et al Phys. Rev. Lett. 78 4047 (1997)

    Article  Google Scholar 

  13. T S Gill Pramana J Phys 55 835 (2000)

    Article  Google Scholar 

  14. P Sprangle Rev A 36 2773 (1987)

    Article  Google Scholar 

  15. R L Burden and J D Faires Numerical analysis 7rd edn. (Brooks-Cole Pacific Grove CA) (2001)

  16. B Babayar-Razlighi Math Res 5 (2019) (In Persian)

  17. G M M Phillips and P J Taylor Theory and applications of numerical analysis 2th edn (Elsevier Science & Technology Books) (1996)

  18. L Tao and H Yong J. Math. Anal. Appl. 324 225 (2006)

    Article  MathSciNet  Google Scholar 

  19. G Birkhoff and G Rota Ordinary differential equations, 4th edn (New York: Wiley) (1989)

  20. A Ralston and H S Wilf Mathematical methods for digital computers (Wiley) (1967)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Babayar-Razlighi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix


In Sect. 3, we have shown that the mathematical model of the problem is as follows

$$ \begin{gathered} \dot{X} = f(X), \hfill \\ X(0) = X_{0} , \hfill \\ \end{gathered} $$
(22)

where

$$ X(\tilde{z}) = \left[ {\begin{array}{*{20}c} {\tilde{r}_{s} (\tilde{z})} \\ {\alpha (\tilde{z})} \\ {\tilde{B}(\tilde{z})} \\ {\Psi (\tilde{z})} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {x_{1} (\tilde{z})} \\ {x_{2} (\tilde{z})} \\ {x_{3} (\tilde{z})} \\ {x_{4} (\tilde{z})} \\ \end{array} } \right],\begin{array}{*{20}c} {f(X) = \left[ {\begin{array}{*{20}c} {\frac{{x_{2} }}{{x_{1} }}} \\ {\frac{{1 + x_{2}^{2} }}{{x_{1}^{2} }} - \theta x_{1}^{2} - \beta x_{3}^{2} } \\ {\frac{{ - x_{2} x_{3} }}{{x_{1}^{2} }}} \\ {1 - \frac{1}{{x_{1}^{2} }} - \gamma + \frac{3}{2}\beta x_{3}^{2} } \\ \end{array} } \right]} \\ \end{array} , $$
(23)

where \(\tilde{r}_{s} (\tilde{z}),\alpha (\tilde{z}),\tilde{B}(\tilde{z}),\Psi (\tilde{z})\) are the unknown physical functions and \(\theta = \frac{{4\pi \,e^{2} N_{n} }}{{2m\,c\omega_{0} }} \cdot \frac{{r_{{s_{0} }}^{2} \,z_{0} }}{{R_{ch}^{2} }} \cdot \Delta \tilde{n}_{e} ,\beta = \frac{{\omega_{0}^{2} n_{0}^{2} n_{2} }}{{2\pi \,c^{2} }}\,P_{in} ,\gamma = \frac{{4\pi e^{2} N_{n} z_{0} }}{{2mc\omega_{0} }}\tilde{n}_{{e_{0} }}\) are known constants. In our sample problem \(X(0) = X_{0} = (1,0,1,0)^{T}\). This is an autonomous system of differential equations. Hence, the extrapolation and the Runge–Kutta methods are simple and applicable. For example, we give the Runge–Kutta method with details in Sect. 4 and we see this simplicity by an algorithm. For the autonomous system (22), suppose \(X = \left( {x_{1} ,...,x_{m} } \right)^{T}\) and \(D\) is the domain of \(f\), then \(f\), is said to satisfy a Lipschitz condition on \(D\) in the variables \(x_{1} ,...,x_{m}\), if a constant \(L > 0\) exists with

$$ \left| {f(x_{1} ,...,x_{m} ) - f(z_{1} ,...,z_{m} )} \right|\begin{array}{*{20}c} {\begin{array}{*{20}c} { \le L\sum\limits_{j = 1}^{m} {\left| {x_{j} - z_{j} } \right|} ,} & {(x_{1} ,...,x_{m} ),(z_{1} ,...,z_{m} ) \in D} \\ \end{array} } \\ \end{array} . $$
(24)

By using the mean value theorem, it can be shown that if \(f\) and its first partial derivatives are continuous on \(D\) and if

$$ \begin{array}{*{20}c} {\begin{array}{*{20}c} {\left| {\frac{{\partial f(x_{1} ,...,x_{m} )}}{{\partial x_{i} }}} \right| \le L,} & {i = 1,2,...,m,} \\ \end{array} (x_{1} ,...,x_{m} ) \in D} \\ \end{array} , $$
(25)

then \(f\) satisfies a Lipschitz condition on \(D\) with Lipschitz constant \(L\) [19]. When \(f\) is continuous and satisfies a Lipschitz condition, then the system (1.1) is a well-posed problem and has a unique solution [15].

In accordance with physical considerations, the domain of the function \(f\) in (23) is \(D = \left\{ {(x_{1} ,x_{2} ,x_{3} ,x_{4} )|0 < \mathop {\min }\limits_{{0 \le \tilde{z}}} x_{1} (\tilde{z}),\mathop {Max}\limits_{{0 \le \tilde{z}}} x_{i} (\tilde{z}) < \infty ,i = 1,2,3,4} \right\}\). Now we show that \(f\) satisfies a Lipschitz condition on \(D\). We define \(m_{1} : = \mathop {\min }\limits_{{0 \le \tilde{z}}} x_{1} (\tilde{z}),M_{i} : = \mathop {Max}\limits_{{0 \le \tilde{z}}} x_{i} (\tilde{z}) < \infty ,i = 1,2,3,4\), then \(\left| {\frac{{\partial f_{1} }}{{\partial x_{1} }}} \right| \le \left| {\frac{{x_{1} }}{{x_{1}^{2} }}} \right| \le \frac{{M_{2} }}{{m_{1}^{2} }} = :l_{11}\), \(\left| {\frac{{\partial f_{1} }}{{\partial x_{2} }}} \right| \le \left| {\frac{1}{{x_{1}^{2} }}} \right| \le \frac{1}{{m_{1}^{2} }} = :l_{12}\),\(\left| {\frac{{\partial f_{1} }}{{\partial x_{3} }}} \right| = \left| {\frac{{\partial f_{1} }}{{\partial x_{4} }}} \right| = 0 = :l_{13} = l_{14}\),\(\left| {\frac{{\partial f_{2} }}{{\partial x_{1} }}} \right| \le \frac{{2\left( {1 + M_{2}^{2} } \right)}}{{m_{1}^{3} }} + 2\theta M_{1} = :l_{21}\),\(\left| {\frac{{\partial f_{2} }}{{\partial x_{2} }}} \right| \le \frac{{2M_{2} }}{{m_{1}^{2} }} = :l_{22}\),\(\left| {\frac{{\partial f_{2} }}{{\partial x_{3} }}} \right| \le 2\beta M_{3} = :l_{23}\),\(\left| {\frac{{\partial f_{2} }}{{\partial x_{4} }}} \right| = 0 = :l_{24}\),\(\left| {\frac{{\partial f_{3} }}{{\partial x_{1} }}} \right| \le \frac{{2M_{2} M_{3} }}{{m_{1}^{3} }} = :l_{31}\),\(\left| {\frac{{\partial f_{3} }}{{\partial x_{2} }}} \right| \le \frac{{M_{3} }}{{m_{1}^{2} }} = :l_{32}\),\(\left| {\frac{{\partial f_{3} }}{{\partial x_{3} }}} \right| \le \frac{{M_{2} }}{{m_{1}^{2} }} = :l_{33}\),\(\left| {\frac{{\partial f_{3} }}{{\partial x_{4} }}} \right| = 0 = :l_{34}\),\(\left| {\frac{{\partial f_{4} }}{{\partial x_{1} }}} \right| \le \frac{2}{{m_{1}^{3} }} = :l_{41}\),\(\left| {\frac{{\partial f_{4} }}{{\partial x_{2} }}} \right| = \left| {\frac{{\partial f_{4} }}{{\partial x_{4} }}} \right| = 0 = :l_{42} = l_{44}\),\(\left| {\frac{{\partial f_{4} }}{{\partial x_{3} }}} \right| \le 3\beta M_{3} = :l_{43}\). Hence, for \(j = 1,2,3,4\), \(\left| {\frac{\partial f}{{\partial x_{j} }}} \right| \le \left| {\left( {\frac{{\partial f_{1} }}{{\partial x_{j} }},\frac{{\partial f_{2} }}{{\partial x_{j} }},\frac{{\partial f_{3} }}{{\partial x_{j} }},\frac{{\partial f_{4} }}{{\partial x_{j} }}} \right)^{T} } \right| = \left( {\sum\limits_{i = 1}^{4} {\left| {\frac{{\partial f_{i} }}{{\partial x_{j} }}} \right|^{2} } } \right)^{1/2} \le \left( {\sum\limits_{i = 1}^{4} {l_{ij}^{2} } } \right)^{1/2} = :L_{j}\).

And by defining \(L = \mathop {Max}\limits_{1 \le j \le 4} L_{j}\), \(f\) satisfies a Lipschitz condition on \(D\) with Lipschitz constant \(L\). Obviously f is continuous and the proposed methods are convergent and have a good accuracy [15] [18]. Indeed, in accordance with [20] page 136 Eq. (21), the extrapolation method has a super convergence accuracy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghalandari, M., Babayar-Razlighi, B. Numerical investigation of guiding of Gaussian laser pulse in plasma channel with radial variation in presence of Kerr effect by Runge–Kutta and extrapolation methods. Indian J Phys 96, 4307–4314 (2022). https://doi.org/10.1007/s12648-022-02357-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02357-5

Keywords

Navigation