Skip to main content
Log in

Effect of self-focusing of bessel gauss laser beam on excitation of electron plasma wave in collisionless plasma with axial density ramp

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

A theoretical investigation has been conducted to analyze the dynamics of electron plasma waves (EPWs) induced by Bessel–Gauss laser beams in plasmas featuring an axial density ramp. The study involves evaluating how the self-focusing of the laser beam influences the power of the laser-excited EPWs. As the laser beam traverses the plasma, it triggers the generation of an EPW at the frequency \({{\varvec{\omega}}}_{\mathbf{e}\mathbf{p}}\). This EPW, affected by the optical nonlinearity of the plasma, becomes nonlinearly coupled to the laser beam due to the ponderomotive nonlinearity of plasma electrons. Employing variational theory, semi-analytical solutions for the coupled nonlinear wave equations governing the pump wave and EPW have been obtained using the W.K.B approximation technique. The findings highlight a significant impact of the self-focusing effect of the pump beam on the power of the EPW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. V.N. Tsytovich, G.E. Morfill, H. Thomas, Complex plasmas: I. complex plasmas as unusual state of matter. Plasma Phys. Rep. 28, 623 (2002)

    Article  ADS  CAS  Google Scholar 

  2. I. Bishop, S. Xian, S. Feller, Robert A. Millikan and the oil drop experiment. The Phys. Teacher 57, 442 (2019)

    Article  ADS  Google Scholar 

  3. M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, J. Woodworth, E.M. Campbell, M.D. Perry, Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626 (1994)

    Article  ADS  CAS  Google Scholar 

  4. H. Hora, New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 37 (2007)

    Article  ADS  CAS  Google Scholar 

  5. K.A. Brueckner, S. Jorna, Laser-driven fusion. Rev. Modern Phys. 46, 325 (1974)

    Article  ADS  CAS  Google Scholar 

  6. M. Moyer, Fusion’s false dawn. Sci. Am. 302, 50 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. A.R. Kantrowitz, T.R. Brogan, R.J. Rosa, J.F. Louis, The magnetohydro dynamic power generator-basic principles, state of the art, and areas of application. IRE Trans. on Military Electron. 6, 78 (1962)

    Article  Google Scholar 

  8. A. Singh, N. Gupta, Beat wave excitation of electron plasma wave by relativistic cross focusing of cosh-Gaussian laser beams in plasma. Phys. Plasmas 22, 062115 (2015)

    Article  ADS  Google Scholar 

  9. N. Gupta, A. Singh, Effect of cross-focusing of two q-Gaussian laser beams on excitation of electron plasma wave in collisional plasma. Optik 127, 8542 (2016)

    Article  ADS  Google Scholar 

  10. L. Friedlandl, A.G. Shagalov, Extreme driven ion acoustic waves featured. Phys. Plasmas 24, 082106 (2017)

    Article  ADS  Google Scholar 

  11. B. Song, N.D. Angelo, R.L. Merlino, Ion-acoustic waves in a plasma with negative ions. Phys. Fluids B 3, 284 (1991)

    Article  ADS  CAS  Google Scholar 

  12. M. Smid, O. Renner, A. Colaitis, V.T. Tikhonchuk, T. Schlegel, F.B. Rosme, Characterization o super thermal electrons inside a laser accelerated plasma via highly-resolved K-emission. Nat. Commun. 10, 4212 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. R.E. Olson, R.J. Leeper, A. Nobile, J.A. Oertel, G.A. Chandler, K. Cochrane, S.C. Dropinski, S. Evans, S.W. Haan, J.L. Kaae, J.P. Knauer, K. Lash, L.P. Mix, A. Nikroo, G.A. Rochau, G. Rivera, C. Russell, D. Schroen, R.J. Sebring, D.L. Tanner, R.E. Turner, R.J. Wallace, Shock propagation, preheat, and x-ray burnthrough in indirect-drive inertial confinement fusion ablator materials. Phys. Plasmas 11, 2778 (2004)

    Article  ADS  CAS  Google Scholar 

  14. N.V. Kabadi, R. Simpson, P.J. Adrian, A. Bose, J.A. Frenje, M.G. Johnson, B. Lahmann, C.K. Li, C.E. Parker, F.H. Seguin, G.D. Sutcliffe, R.D. Petrasso, S. Atzeni, J. Eriksson, C. Forrest, S. Fess, V.Y. Glebov, R. Janezic, O.M. Mannion, H.G. Rinderknecht, M.J. Rosenberg, C. Stoeckl, G. Kagan, M. Hoppe, R. Luo, M. Schoff, C. Shuldberg, H.W. Sio, J. Sanchez, L. Hopkins, D. Schlossberg, K. Hahnand, C. Yeamans, Thermal decoupling of deuterium and tritium during the inertial confinement fusion shock-convergence phase. Phys. Rev. E 104, 013201 (2021)

    Article  ADS  Google Scholar 

  15. N. Gupta, S. Kumar, Linear and nonlinear propagation characteristics of multi-Gaussian laser beams. Chinese Phys. B 29, 114210 (2020)

    Article  ADS  Google Scholar 

  16. A. Sharma, I. Kourakis, Spatial evolution of a q-Gaussian laser beam in relativistic plasma. Laser and Part. Beams 28, 479 (2010)

    Article  ADS  CAS  Google Scholar 

  17. N. Gupta, S. Kumar, Generation of second harmonics of q -Gaussian laser beams in collisional plasma with upward density ramp. Laser Phys. 30, 066003 (2020)

    Article  ADS  CAS  Google Scholar 

  18. N. Gupta, S. Kumar, A. Gnaneshwaran, S. Kumar, S. Choudhry, Self-focusing of cosh-Gaussian laser beam in collisional plasma: effect of nonlinear absorption. J. Optics 50, 701 (2021)

    Article  Google Scholar 

  19. P. Johannisson, D. Anderson, M. Lisak, M. Marklund, Nonlinear Bessel beams. Opt. Commun. 222, 107 (2003)

    Article  ADS  CAS  Google Scholar 

  20. D. Anderson, M. Bonnedal, M. Lisak, Nonlinear propagation of elliptically shaped Gaussian laser beams. J. Plasma Phys. 23, 115 (1980)

    Article  ADS  CAS  Google Scholar 

  21. D. Anderson, M. Bonnedal, Variational approach to nonlinear self-focusing of Gaussian laser beams. Phys. Fluids 22, 105 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  22. N. Gupta, S.B. Bhardwaj, Nonlinear interaction of Bessel-Gauss laser beams with plasmas with axial temperature ramp. J. Opt. 51, 950 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., K, A.A., Partap, R. et al. Effect of self-focusing of bessel gauss laser beam on excitation of electron plasma wave in collisionless plasma with axial density ramp. J Opt (2024). https://doi.org/10.1007/s12596-024-01700-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01700-9

Keywords

Navigation