Skip to main content
Log in

Evolutionary behavior of various wave solutions of the (2+1)-dimensional Sharma–Tasso–Olver equation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, multiple rogue wave solutions of the (2+1)-dimensional Sharma–Tasso–Olver equation were studied by applying the bilinear neural network method. First, we introduced a single-hidden layer neural network model (NMM) and several types of solutions which can be calculated by this model have been summarized. Additionally, we introduced a “3-2-4” NNM and obtained the solution expression by choosing particular weight coefficients and test functions of the model. Then, through different center of this model, we gave three kinds of rogue wave solutions centered at the origin and three kinds of rogue wave solutions centered with a fixed center. The solutions centered with a fixed center were studied in detail. Finally, several groups of images with physical interpretation, including three-dimensional, contour and density plots exhibited their dynamic structure and physical properties. Furthermore, the obtained results have immensely augmented the exact solutions of the (2+1)-dimensional Sharma–Tasso–Olver equation on the existing literature and enabled us to understand the nonlinear dynamic system deeply, and thus, the proposed method will be a strong boost to the calculation method of nonlinear equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G Akram and F Batool Indian J. Phys. 91 1145 (2017)

    Article  ADS  Google Scholar 

  2. M L Wang, Y B Zhou and Z B Li Phys. Lett. A 216 67 (1996)

    Article  ADS  Google Scholar 

  3. H H Chen, Y C Li and C S Liu Phys. Scr. 20 490 (1979)

    Article  ADS  Google Scholar 

  4. R Hirota and J Satsuma Supplement Prog. Theor. Phys. 59 64 (1976)

    Article  ADS  Google Scholar 

  5. Y J Tian, X L Yong, Y H Huang and J W Gao Indian J. Phys. 91 129 (2017)

    Article  ADS  Google Scholar 

  6. R Hirota and J Satsuma Phys. Lett. A 85 407 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  7. H O Roshid, M R Kabir, R C Bhowmik and B K Datta SpringerPlus 3 692 (2014)

    Article  Google Scholar 

  8. H O Roshid and M A Rahman Results Phys. 4 150 (2014)

    Article  Google Scholar 

  9. H O Roshid J. Ocean Eng. Sci. 2 196 (2017)

    Article  Google Scholar 

  10. W X Ma Phys. Lett. A 301 35 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  11. M B Hossen, H O Roshid and M Z Ali Int. J. Appl. Comput. Math 3 S679 (2017)

    Google Scholar 

  12. H O Roshid and M M Rashidi J. Ocean Eng. Sci. 2 120 (2017)

    Article  Google Scholar 

  13. M S Khatun, M F Hoque and M A Rahman Pramana-J Phys. 88 86 (2017)

    Article  ADS  Google Scholar 

  14. M F Hoque and H O Roshid Phys. Scr. 95 075219 (2020)

    Article  Google Scholar 

  15. L Kaur and A M Wazwaz Optik 179 479 (2019)

    Article  ADS  Google Scholar 

  16. L Kaur and A M Wazwaz Phys. Scr. 93 075203 (2018)

    Article  ADS  Google Scholar 

  17. H O Roshid, M H Khan, A M Wazwaz Heliyon 6 e03701 (2020)

    Article  Google Scholar 

  18. J Q Lü, S D Bilige and T M Chaolu Nonlinear Dyn. 91 1669 (2018)

    Article  Google Scholar 

  19. J Manafian, S A Mohammed, A Alizadeh, H M Baskonus and W Gao Eur. J. Mech. B. Fluid 84 289 (2020)

    Article  Google Scholar 

  20. J Manafian, B Mohammadi-Ivatloo and M Abapour Appl. Math. Comput. 356 141 (2019)

    Google Scholar 

  21. J Manafian and M Lakestani Pramana-J. Phys. 92 41 (2019)

    Article  ADS  Google Scholar 

  22. J Manafian, O A Ilhan, L Avazpour and A Alizadeh Math. Method Appl. Sci. 43 9904 (2020)

    Article  ADS  Google Scholar 

  23. J Manafian Comput. Math. Appl. 76 1246 (2018)

    Article  MathSciNet  Google Scholar 

  24. R F Zhang and S D Bilige Mod. Phys. Lett. B 33 1950067 (2019)

    Article  ADS  Google Scholar 

  25. M S Ullah, M Z Ali, H O Roshid, A R Seadawy and D Baleanu Phys. Lett. A 397 127263 (2021)

    Article  Google Scholar 

  26. X E Zhang, Y Chen and Y Zhang Comput. Math. Appl. 74 2341 (2017)

    Article  MathSciNet  Google Scholar 

  27. L Kaur and A M Wazwaz Int. J. Numer. Method H 29 569 (2019)

    Article  Google Scholar 

  28. L Kaur and A M Wazwaz Rom. Rep. Phys. 71 102 (2019)

    Google Scholar 

  29. L Kaur and A M Wazwaz Phys. Scr. 95 115213 (2020)

    Article  ADS  Google Scholar 

  30. J Manafian and M Lakestani Math. Method Appl. Sci. 44 1052 (2020)

    Article  Google Scholar 

  31. W X Ma E. Asian J. Appl. Math. 9 185 (2019)

    Article  Google Scholar 

  32. M B Hossen, H O Roshid and M Z Ali Phys. Lett. A 382 1268 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. Z L Zhao and L C He Appl. Math. Lett. 95 114 (2019)

    Article  MathSciNet  Google Scholar 

  34. R M Li and X G Geng Commun. Nonlinear Sci. 90 105408 (2020)

    Article  Google Scholar 

  35. Y Y Feng and S D Bilige Wave Random Complexhttps://doi.org/10.1080/17455030.2021.1900625

  36. R F Zhang and S D Bilige Nonlinear Dyn. 95 3041 (2019)

    Article  Google Scholar 

  37. R F Zhang, M C Li, A Mohammed, F C Zheng and Z Z Lan Appl. Math. Comput. 403 126201 (2021)

    Google Scholar 

  38. R F Zhang, M C Li and H M Yin Nonlinear Dyn. 103 1071 (2021)

    Article  Google Scholar 

  39. R F Zhang, S D Bilige and T M Chaolu J. Syst. Sci. Complex 34 122 (2021)

    Article  MathSciNet  Google Scholar 

  40. R F Zhang, S D Bilige, J G Liu and M C Li Phys. Scr. 96 025224 (2021)

    Article  ADS  Google Scholar 

  41. Q L Zha Comput. Math. Appl. 75 3331 (2018)

    Article  MathSciNet  Google Scholar 

  42. H C Ma, C Y Zhang and A P Deng Complexity 2020 1 (2020)

    Google Scholar 

  43. B Ren and W X Ma Chinese J. Phys. 60 153 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (12061054,11661060), Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (NJYT-20-A06) and the Natural Science Foundation of Inner Mongolia Autonomous Region of China (2018LH01013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Bilige.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y.Y., Bilige, S.D. & Zhang, R.F. Evolutionary behavior of various wave solutions of the (2+1)-dimensional Sharma–Tasso–Olver equation. Indian J Phys 96, 2107–2114 (2022). https://doi.org/10.1007/s12648-021-02154-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02154-6

Keywords

Navigation