Skip to main content
Log in

Theoretical examination of solitary waves for Sharma–Tasso–Olver Burger equation by stability and sensitivity analysis

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The Sharma–Tasso–Olver–Burgers (STOB) equation is a nonlinear partial differential equation that appears in many branches of science, engineering and describes significant phenomena including wave propagation and fluid dynamics. The STOB equation characteristics and solutions for the nonlinear situation are thoroughly examined in this research work. The analytical techniques, namely the extended \((\frac{G'}{G^{2}})\)-expansion method, stability analysis, and sensitivity analysis, are used to determine the solitons solution of STOB equation. The study begins with an overview of the equation, highlighting its significance in modeling. The nonlinear nature of the equation leads to interesting dynamics and challenges in its analysis and solution. The research paper focuses on understanding the behavior of solutions and identifying the solution with the help of graphical interpretation. Numerous of the identified solutions are depicted in figures to provide a physical comprehension. Because it is critical, we use appropriate values of parameters to highlight the physical aspects of the supplied data using 3D, 2D, and contour charts. The proposed techniques are valuable and contribute to the field of nonlinear sciences. Various nonlinear evolutionary equations are employed to represent models of nonlinear physical phenomena

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Yang, C., Li, W., Yu, W., Liu, M., Zhang, Y., Ma, G., Lei, M., Liu, W.: Amplification, reshaping, fission and annihilation of optical solitons in dispersion-decreasing fiber. Nonlinear Dyn. 92, 203–213 (2018)

    Article  Google Scholar 

  2. Zhou, Q., Luan, Z., Zeng, Z., Zhong, Y.: Effective amplification of optical solitons in high power transmission systems. Nonlinear Dyn. 109(4), 3083–3089 (2022)

    Article  Google Scholar 

  3. Li, Y.L., Ma, B.Q.: Optical soliton resonances and soliton molecules for the Lakshmanan–Porsezian–Daniel system in nonlinear optics. Nonlinear Dyn. 111(7), 6689–6699 (2023)

    Article  Google Scholar 

  4. Zheng, B.: The Riccati sub-ODE method for fractional differential-difference equations. WSEAS Trans. Math. 13, 192–200 (2014)

    Google Scholar 

  5. Akinyemi, L., Mirzazadeh, M., Amin, B.S., Hosseini, K.: Dynamical solitons for the perturbated Biswas–Milovic equation with Kudryashov’s law of refractive index using the first integral method. J. Mod. Opt. 69(3), 172–182 (2022)

    Article  MathSciNet  Google Scholar 

  6. Ilie, M.: An application of the first intrrgal method for time-fractional differential equation. J. Fract. Calc. Appl. 13(2), 32–44 (2022)

    MathSciNet  Google Scholar 

  7. Yao, S.W., Manzoor, R., Zafar, A., Inc, M., Abbagari, S., Houwe, A.: Exact soliton solutions to the Cahn–Allen equation and Predator-Prey model with truncated M-fractional derivative. Res. Phys. 37, 105455 (2022)

    Google Scholar 

  8. Ibrahim, S., Ashir, A.M., Sabawi, Y.A., Baleanu, D.: Realization of optical solitons from nonlinear Schrödinger equation using modified sardar sub-equation technique. Opt. Quant. Electron. 55(7), 617 (2023)

    Article  Google Scholar 

  9. Cinar, M., Secer, A., Ozisik, M., Bayram, M.: Derivation of optical solitons of dimensionless Fokas–Lenells equation with perturbation term using sardar sub-equation method. Opt. Quant. Electron. 54(7), 402 (2022)

    Article  Google Scholar 

  10. Zayed, E.M.E.: A note on the modified simple equation method applied to Sharma–Tasso–Olver equation. Appl. Math. Comput. 218(7), 3962–3964 (2011)

    MathSciNet  Google Scholar 

  11. Kaplan, M., Bekir, A., Akbulut, A., Aksoy, E.: The modified simple equation method for nonlinear fractional differential equations. Rom. J. Phys. 60(9–10), 1374–1383 (2015)

    Google Scholar 

  12. Almatrafi, M.B.: Construction of closed form soliton solutions to the space-time fractional symmetric regularized long wave equation using two reliable methods. Fractals 31, 2340160 (2023)

    Article  Google Scholar 

  13. Ekici, M.: Optical solitons with Kudryashov’s quintuple power-law coupled with dual form of non-local law of refractive index with extended Jacobi’s elliptic function. Opt. Quant. Electron. 54(5), 279 (2022)

    Article  Google Scholar 

  14. Khalil, T.A., Badra, N., Ahmed, H.M., Rabie, W.B.: Optical solitons and other solutions for coupled system of nonlinear Biswas–Milovic equation with Kudryashov’s law of refractive index by Jacobi elliptic function expansion method. Optik 253, 168540 (2022)

    Article  Google Scholar 

  15. Ekici, M.: Stationary optical solitons with Kudryashov’s quintuple power law nonlinearity by extended Jacobi’s elliptic function expansion. J. Nonlinear Opt. Phys. Mater. 32(01), 2350008 (2023)

    Article  Google Scholar 

  16. Ananna, S.N., An, T., Asaduzzaman, Md., Rana, Md.S.: Sine–Gordon expansion method to construct the solitary wave solutions of a family of \(3d\) fractional WBBM equations. Res. Phys. 40, 105845 (2022)

    Google Scholar 

  17. Das, P.K., Mirhosseini, A.S.M., Gholami, D., Rezazadeh, H.: A comparative study between obtained solutions of the coupled Fokas–Lenells equations by Sine–Gordon expansion method and rapidly convergent approximation method. Optik 283, 170888 (2023)

    Article  Google Scholar 

  18. Kemaloğlu, B., Yel, G., Bulut, H.: An application of the rational sine-Gordon method to the Hirota equation. Opt. Quant. Electron. 55(7), 658 (2023)

    Article  Google Scholar 

  19. Marwan, A.: New interesting optical solutions to the quadratic-cubic Schrodinger equation by using the Kudryashov-expansion method and the updated rational sine-cosine functions. Opt. Quant. Electron. 56(666), 1468 (2022)

    Google Scholar 

  20. Alquran, M.: Physical properties for bidirectional wave solutions to a generalized fifth-order equation with third-order time-dispersion term. Res. Phys. 28, 104577 (2021)

    Google Scholar 

  21. Ahmed, M.S., Zaghrout, A.S., Ahmed, H.M., Arnous, A.H.: Optical soliton perturbation of the Gerdjikov–Ivanov equation with spatio-temporal dispersion using a modified extended direct algebraic method. Optik 259, 168904 (2022)

    Article  Google Scholar 

  22. Ghayad, M.S., Badra, N.M., Ahmed, H.M., Rabie, W.B.: Derivation of optical solitons and other solutions for nonlinear Schrödinger equation using modified extended direct algebraic method. Alex. Eng. J. 64, 801–811 (2023)

    Article  Google Scholar 

  23. Ismael, H.F., Sulaiman, T.A.: On the dynamics of the nonautonomous multi-soliton, multi-lump waves and their collision phenomena to a (3+ 1)-dimensional nonlinear model. Chaos Solitons Fractals 169, 113213 (2023)

    Article  MathSciNet  Google Scholar 

  24. Shen, Y., Tian, B., Cheng, C.D., Zhou, T.Y.: N-soliton, m th-order breather, h th-order lump, and hybrid solutions of an extended \((3+ 1)\)-dimensional kadomtsev-petviashvili equation. Nonlinear Dyn. 111, 1–18 (2023)

    Article  Google Scholar 

  25. Rao, J., Mihalache, D., Cheng, Y., He, J.: Lump-soliton solutions to the Fokas system. Phys. Lett. A 383(11), 1138–1142 (2019)

    Article  MathSciNet  Google Scholar 

  26. Lü, X., Chen, S.J.: Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types. Nonlinear Dyn. 103, 947–977 (2021)

    Article  Google Scholar 

  27. Alhami, R., Alquran, M.: Extracted different types of optical lumps and breathers to the new generalized stochastic potential-KdV equation via using the Cole-Hopf transformation and Hirota bilinear method. Opt. Quant. Electron. 54(9), 553 (2022)

    Article  Google Scholar 

  28. Alquran, M., Alhami, R.: Analysis of lumps, single-stripe, breather-wave, and two-wave solutions to the generalized perturbed-KdV equation by means of Hirota’s bilinear method. Nonlinear Dyn. 109(3), 1985–1992 (2022)

    Article  Google Scholar 

  29. Alquran, M.: Necessary conditions for convex-periodic, elliptic-periodic, inclined-periodic, and rogue wave-solutions to exist for the multi-dispersions Schrodinger equation. Phys. Scr. 99, 025248 (2024)

    Article  Google Scholar 

  30. Khater, M.M.A.: Nonparaxial pulse propagation in a planar waveguide with Kerr-like and Quintic nonlinearities; computational simulations. Chaos, Solitons Fractals 157, 111970 (2022)

    Article  MathSciNet  Google Scholar 

  31. Tiecheng, X., Xiaohong, C., Dengyuan, C.: Darboux transformation and soliton-like solutions of nonlinear Schroedinger equations. Chaos Solitons Fractals 26, 889–896 (2005)

    Article  MathSciNet  Google Scholar 

  32. Zhujun, J., Jianping, Y., Wei, F.: Bifurcation and chaos in neural excitable system. Chaos Solitons Fractals 27, 197–215 (2006)

    Article  MathSciNet  Google Scholar 

  33. Yao, S.W., Behera, S., Inc, M., Rezazadeh, J.P.S., Virdi, H., Mahmoud, W., Arqub, O.A., Osman, M.S.: Analytical solutions of conformable Drinfel’d–Sokolov–Wilson and Boiti Leon Pempinelli equations via Sine–Cosine method. Res. Phys. 42, 105990 (2022)

    Google Scholar 

  34. Fendzi-Donfack, E., Temgoua, Z.I., Djoufack, G.W.K., Kenfack-Jiotsa, A., Nguenang, J.P., Nana, L.: Exotical solitons for an intrinsic fractional circuit using the sine–cosine method. Chaos Solitons Fractals 160, 112253 (2022)

    Article  MathSciNet  Google Scholar 

  35. Ali, M., Alquran, M., Salman, O.B.: A variety of new periodic solutions to the damped (2+ 1)-dimensional Schrodinger equation via the novel modified rational sine–cosine functions and the extended tanh–coth expansion methods. Res. Phys. 37, 105462 (2022)

    Google Scholar 

  36. Alquran, M.: Optical bidirectional wave-solutions to new two-mode extension of the coupled KdV–Schrodinger equations. Opt. Quant. Electron. 53(10), 588 (2021)

    Article  Google Scholar 

  37. Almatrafi, M.B.: Solitary wave solutions to a fractional model using the improved modified extended tanh-function method. Fractal Fract. 7(3), 252 (2023)

    Article  MathSciNet  Google Scholar 

  38. Almatrafi, M.B., Alharbi, A.: New soliton wave solutions to a nonlinear equation arising in plasma physics. CMES-Comput. Model. Eng. Sci. 137(1), 1–15 (2023)

    Google Scholar 

  39. Alharbi, A.R., Almatrafi, M.B.: Exact solitary wave and numerical solutions for geophysical KdV equation. J. King Saud Univ.-Sci. 34(6), 102087 (2022)

    Article  Google Scholar 

  40. Alharbi, A.R., Almatrafi, M.B.: New exact and numerical solutions with their stability for Ito integro-differential equation via Riccati–Bernoulli sub-ode method. J. Taibah Univ. Sci. 14(1), 1447–1456 (2020)

    Article  Google Scholar 

  41. Ahmed, R., Almatrafi, M.B.: Complex dynamics of a predator-prey system with Gompertz growth and herd behavior. Int. J. Anal. Appl. 21, 100–100 (2023)

    Article  Google Scholar 

  42. Khan, A.Q., Almatrafi, M.B.: Two-dimensional discrete-time laser model with chaos and bifurcations. AIMS Math. 8, 6804–6828 (2023)

    Article  MathSciNet  Google Scholar 

  43. Yan, Z., Lou, S.: Soliton molecules in Sharma–Tasso–Olver–Burgers equation. Appl. Math. Lett. 104, 106271 (2020)

    Article  MathSciNet  Google Scholar 

  44. Zhou, T.Y., Tian, B., Chen, S.S., Wei, C.C., Chen, Y.Q.: Bäcklund transformations, lax pair and solutions of a Sharma–Tasso–Olve–Burgers equation for the nonlinear dispersive waves. Mod. Phys. Lett. B 35(35), 2150421 (2021)

    Article  Google Scholar 

  45. Sheikh, Md.A.N., Taher, M.A., Hossain, M.M., Akter, M.M., et al.: Variable coefficient exact solution of Sharma–Tasso–Olver model by enhanced modified simple equation method. Partial Differ. Equ. Appl. Math. 7, 100527 (2023)

    Article  Google Scholar 

  46. Hosseini, K., Ilie, M., Mirzazadeh, M., Baleanu, D., Park, C., Salahshour, S.: The Caputo–Fabrizio time-fractional Sharma–Tasso–Olver–Burgers equation and its valid approximations. Commun. Theor. Phys. 74(7), 075003 (2022)

    Article  MathSciNet  Google Scholar 

  47. Zhou, Y., Zhuang, J.: Dynamics and exact traveling wave solutions of the Sharma–Tasso–Olver–Burgers equation. Symmetry 14(7), 1468 (2022)

    Article  Google Scholar 

  48. Yan, Z., Lou, S.: Soliton molecules in Sharma–Tasso–Olver–Burgers equation. Appl. Math. Lett. 104, 106271 (2020)

    Article  MathSciNet  Google Scholar 

  49. Obaidullah, U., Jamal, S.: A computational procedure for exact solutions of Burgers’hierarchy of nonlinear partial differential equations. J. Appl. Math. Comput. 65(1–2), 541–551 (2021)

    Article  MathSciNet  Google Scholar 

  50. Sheikh, Md., Abu, N., Taher, M.A., Hossain, M.M., Akter, S., et al.: Variable coefficient exact solution of Sharma–Tasso–Olver model by enhanced modified simple equation method. Partial Differ. Equ. Appl. Math. 7, 100527 (2023)

    Article  Google Scholar 

  51. Younas, U., Sulaiman, T.A., Ismael, H.F., Ren, J., Yusuf, A.: The study of nonlinear dispersive wave propagation pattern to Sharma–Tasso–Olver–Burgers equation. Int. J. Modern Phys. B 38, 2450112 (2023)

    Article  Google Scholar 

  52. Mahmood, I., Hussain, E., Mahmood, A., Anjum, A., Shah, S.A.A.: Optical soliton propagation in the Benjamin–Bona–Mahoney–Peregrine equation using two analytical schemes. Optik 287, 171099 (2023)

    Article  Google Scholar 

  53. Mahmood, I., Hussain, E., Mahmood, A., Anjum, A., Shah, S.A.A.: Optical soliton propagation in the Benjamin–Bona–Mahoney–Peregrine equation using two analytical schemes. Optik 287, 171099 (2023)

    Article  Google Scholar 

  54. Tang, L., Biswas, A., Yildirim, Y., Asiri, A.: Bifurcation analysis and chaotic behavior of the concatenation model with power-law nonlinearity. Contemp. Math. 4, 1014–1025 (2023)

    Article  Google Scholar 

  55. Chahlaoui, Y., Ali, A., Ahmad, J., Javed, S.: Dynamical behavior of chaos, bifurcation analysis and soliton solutions to a Konno–Onno model. PLoS ONE 18(9), e0291197 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

“The authors extend their appreciation to King Saud University for funding this work through Researchers Supporting Project Number (RSPD2024R711), King Saud University, Riyadh, Saudi Arabia.”

Funding

“This research was funded by King Saud University through Researchers Supporting Project number (RSPD2024R711)”

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in preparation, drafting, editing and reviewing the manuscript.

Corresponding author

Correspondence to Syed Asif Ai Shah.

Ethics declarations

Conflict of interest

Authors declare that they have not any conflict of interest of personal financial nature.

Ethics approval and consent to participate

The authors declare that there is no conflict with publication ethics.

Consent for publication

The authors declare that there is no conflict with publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, E., Mutlib, A., Li, Z. et al. Theoretical examination of solitary waves for Sharma–Tasso–Olver Burger equation by stability and sensitivity analysis. Z. Angew. Math. Phys. 75, 96 (2024). https://doi.org/10.1007/s00033-024-02225-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-024-02225-8

Keywords

Mathematics Subject Classification

Navigation