Skip to main content
Log in

Critical magnetic inhomogeneities and crossover electrical transport properties in La0.4Bi0.6Mn0.99Ga0.01O3 manganite

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The polycrystalline compound La0.4Bi0.6Mn0.99Ga0.01O3 has been studied for its interesting structural, magnetic and electrical transport properties. The compound has been synthesized using nitrate reaction route with the incorporation of controllable temperature cycling method. The phase purity of the studied compound has been verified from the X-ray diffraction and Reitveld refinement technique/analysis. The microstructural studies of the synthesized compound suggest proper crystalline shapes and elemental confirmation of the composition. The magnetization measurements carried out on the studied compound reveal that at low temperature, the magnetic spins exhibit glassy behavior and near phase transition temperature the inhomogeneity due to the critical frustrations. Further from the AC susceptibility measurements the low temperature magnetic spin interaction is found to be a manifestation of re-entrant spin glass like behavior, and from critical analysis, the magnetic inhomogeneity at phase transitions has been evidenced. The transport properties from the conductivity measurements carried out on the studied compound are understood based on the polaronic hopping model. Further at temperatures greater than the Debye temperature, the polaronic conduction follows small polaronic hopping mechanism and at temperatures less than the Debye temperature the polaronic conduction crossover to Mott’s variable range hopping mechanism. The magneto-conductivity measurements studied for the compound reveal the quadratic dependencies above the magnetic critical temperatures, where scattering mechanism is due to the phonon–polaron interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J M D Coey, M Viret and S von Molnar Adv. Phys. 48 167 (1999)

    Article  ADS  Google Scholar 

  2. A P Ramirez J. Phys.: Condens. Matter 9 8171 (1997)

    ADS  Google Scholar 

  3. J B Goodenough, A Wold, R J Arnott and N Menyuk Phys. Rev. 124 373 (1961)

    Article  ADS  Google Scholar 

  4. S M Yusuf, M Sahana, K Dörr, U K Rössler and K H Müller Phys. Rev. B 66 064414 (2002)

    Article  ADS  Google Scholar 

  5. T Ogawa, A Sandhu, M Chiba, H Takeuchi and Y Koizumi J. Magn. Magn. Mater. 290–291 933 (2005)

    Article  ADS  Google Scholar 

  6. K V Punith and V Dayal Mater Res. Express. 2 046105 (2015)

    Article  Google Scholar 

  7. C Zener et al Phys. Rev. 81 440 (1951)

    Article  ADS  Google Scholar 

  8. C M Varma Phys. Rev. B 54 7328 (1996)

    Article  ADS  Google Scholar 

  9. V Punith Kumar, RL Hadimani, D Paladhi, TK Nath, DC Jiles, Vijaylakshmi Dayal 2016 Materials Science and Engineering 209: 75–86

  10. D Cao et al. Phys. Rev. B 64 184409 (2001)

    Article  ADS  Google Scholar 

  11. J-S Zhou, H Q Yin and J B Goodenough Phys. Rev. B 63 184423 (2001)

    Article  ADS  Google Scholar 

  12. H M Reitveld J. Appl. Crystallogr. 2 65 (1969)

    Article  Google Scholar 

  13. J Rodriguez-Carvajal Physica B 192 55 (1993)

    Article  ADS  Google Scholar 

  14. G K Williamson and R E Smallman The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 1 1 34 (1956)

    Google Scholar 

  15. V.M. Goldschmidt Geochemistry (London: Oxford University Press) XI-730 (1958)

  16. Ilyas Noor Bhatti, Imtiaz Noor Bhatti, Rabindra Nath Mahato, M.A.H. Ahsan, Phys. Lett. A. 383, 2326 (2019)

  17. Dinesh Kumar and Akhilesh Kumar Singh J. Magn. Magn. Mater. 469 264 (2019)

    Article  ADS  Google Scholar 

  18. M. El-Hilo, J. Appl. Phys. 112, 103915 (2012); V. Dayal, V. Punith Kumar, R.L. Hadimani, D.C. Jiles, Curr. Appl. Phys. 15, 1245 (2015)

  19. M Balanda Acta Physica Polonica A 124 964 (2013)

    Article  ADS  Google Scholar 

  20. Sanjay Kumar Upadhyay, Kartik K Iyer, S. Rayaprol, V. Siruguri, and E.V. Sampathkumaran, J. Mater. Chem. C, 5, 5163–5169 (2017)

  21. B Kalska, J J Paggel, P Fumagalli, M Hilgendorff and M Giersig J. Appl. Phys. 92 7481 (2002)

    Article  ADS  Google Scholar 

  22. T T Lin et al IEEE Transactions on Nanotechnology 13 425 (2014)

    Article  ADS  Google Scholar 

  23. H Hirashima, D Arai and T Yoshida J Am Ceram Soc 68 486 (1985)

    Article  Google Scholar 

  24. H Huhtinen et al J. Magn. Magn. Mater. 238 160 (2002)

    Article  ADS  Google Scholar 

  25. Sayani Bhattacharya, RK Mukherjee, and B. K. Chaudhuri, Appl. Phys. Lett. 82, 4101 (2003)

  26. I G Austin and N F Mott Adv Phys 18 41 (1969)

    Article  ADS  Google Scholar 

  27. J Schnakenberg Phys Status Solidi 28 623 (1968)

    Article  Google Scholar 

  28. N F Mott Philos Mag 19 835 (1969)

    Article  ADS  Google Scholar 

  29. T Holstein Ann Phys 8 343 (1959)

    Article  ADS  Google Scholar 

  30. V Punith Kumar, V Dayal, RL Hadimani, RN Bhowmik, DC Jiles, J Mater Sci 50 3562 (2015)

  31. Mott N F & Davis E A, Electronic Processes in Non-Crystalline Materials (Oxford Clarendon), 2nd Edn, (1979)

  32. T G Castner Hopping conduction in the critical regime approaching the metal-insulator transition. In: M Pollak, B Shklovskii (eds.) Hopping transport in solids. Elsevier, Amsterdam (1991)

    Google Scholar 

  33. N. Ibrahim, A.K. Yahya, S.S. Rajput, S. Keshri, M.K. Talari, J. Magn. Magn. Mater. 323, 2179e2185 (2011)

  34. P Wagner, I Gordon, L Trappeniers, J Vanacken, F Herlach, V V Moshchalkov and Y Bruynseraede Phys. Rev. Lett. 81 3980 (1998)

    Article  ADS  Google Scholar 

  35. E Bose, S Karmakar, B K Chaudhuri and S Pal Solid State Commun 145 149 (2008)

    Article  ADS  Google Scholar 

  36. G N Greaves J Non-Cryst Solids 11 427 (1973)

    Article  ADS  Google Scholar 

  37. G Jeffrey Snyder, M R Beasley, T H Geballe, Ron Hiskes and Steve Di Carolis Appl. Phys. Lett. 69 4254 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the International Centre for Theoretical Sciences (ICTS) via the program—Novel Phases of Quantum Matter (Code: ICTS/topmatter2019/12). I am greatly indebted to DAE-BRNS, Government of India for junior research fellowship (JRF) and senior research fellowship (SRF) (2011–2015), Maharaja Research Foundation (MRF) for the extended SRF fellowship (2015–2017) and Indian Institute of Science, Bangalore, for project research fellowship (2017-2018) under Dr. Srimanta Middey (IISC Startup, Capital and Revenue Manpower Grant: 78-0103-0020-01-436). I am extremely grateful to Dr. Rajeev Rawat and Mr. Sachin of UGC-DAE CSR, Indore for conductivity measurements. I am also grateful to Dr. T. K. Nath, Department of Physics and Astronomy, Indian Institute of Technology, Kharagpur for the Ac Susceptibility measurements. Finally, I thank Dr. Ravi L. Hadimani, Virginia Commonwealth University, USA and Dr. David C. Jiles, FRS, Palmer Endowed Departmental Chair in Electrical and Computer Engineering, Iowa State University, USA for their continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Punith Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V.P. Critical magnetic inhomogeneities and crossover electrical transport properties in La0.4Bi0.6Mn0.99Ga0.01O3 manganite. Indian J Phys 96, 1393–1404 (2022). https://doi.org/10.1007/s12648-021-02090-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02090-5

Keywords

Navigation