Skip to main content
Log in

An analysis of Maxwell fluid through a shrinking sheet with thermal slip effect: a Lie group approach

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Two-dimensional magnetohydrodynamic (MHD) boundary layer flow of an upper-convected Maxwell (UCM) fluid passing through the shrinking sheet is considered. With the impact of thermal slip, thermal radiation and heat source-sink conditions, the UCM fluid model is integrated. The method of the Lie scaling group is used to transform the strongly nonlinear governing partial differential equations (PDEs) into the ordinary differential equations (ODEs). The transformed ODEs are numerically solved using NDSolve command of MATHEMATICA and graphically presented with their results. The Deborah number’s influence on the velocity profile \(f^{\prime } (\eta )\) is studied for different values and different behavior observed. The Hartmann number M and the mass transfer parameter S have decreased the boundary layer thickness. The Prandtl number has increased the temperature profile \(\theta (\eta )\). In contrast, the thermal boundary layer thickness was decreased by the heat source-sink parameter Q , the radiation parameter R and the thermal slip parameter L. Table 1 shows the verification of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(B_{0}\) :

Uniform magnetic field strength (T)

\(D_{1}\) :

Shrinking sheet constant

k :

Thermal conductivity [W/(m K)]

\(L_{1}\) :

Slip constant

\(Q_{\mathrm{o}}\) :

Heat source-sink parameter

\(R^{^{\prime }}\) :

Rate of chemical reaction

T :

Temperature of the fluid (K)

\(T_{\mathrm{w}}\) :

Temperature at the wall (K)

\(T_{\infty }\) :

Free stream temperature (K)

\(U_{\mathrm{w}}\) :

Shrinking sheet velocity (m/s)

\({\overline{u}}\) :

x velocity component (m/s)

\(V_\mathrm{r}\) :

Free stream velocity of the fluid (m/s)

\(V_{0}\) :

Free stream velocity constant (m/s)

\({\overline{v}}\) :

y velocity component (m/s)

\({\overline{x}}\) :

Direction along the sheet

\({\overline{y}}\) :

Direction perpendicular to the sheet

\(\lambda \) :

Relaxation time (s)

\(\nu \) :

Kinematic viscosity (m\(^{2}\)/s)

\(\sigma \) :

Electric conductivity

\(\sigma _{1}\) :

Stefan–Boltzmann constant (W/m\(^{2}\,{\mathrm{K}}^{4})\)

\(\rho \) :

Density (kg/m\(^{3})\)

\(\eta \) :

Similarity parameter

k :

Mean absorption coefficient (1/m)

\(C_{\mathrm{P}}\) :

Specific heat capacity

\(\gamma \) :

Thermal radiation parameter

References

  1. T Hayat, M Awais, M Qasim and A A Hendi Int J. Heat Mass Transf. 54 3777 (2011)

    Article  Google Scholar 

  2. T Hayat, Z Abbas and N Ali Phys. Lett. A 372 4698 (2008)

    Article  ADS  Google Scholar 

  3. Y Y Lok, A Ishak and I Pop Z. Naturforsch 68a 693 (2013)

    Article  ADS  Google Scholar 

  4. K Jafar, R Nazar, A Ishak and I Pop Int. J. Math. Comput. Sci. 8 116 (2014)

    Google Scholar 

  5. N Ishak, H Hashim, M K A Mohamed, N Md Sarif, N Rosli and M Z Salleh Iop Conf. Iop Conf, Ser. J. Phy. Conf. Ser. 890 012021 (2017)

    Article  Google Scholar 

  6. S Chaudhary and P Kumar Appl. Math. 4 574 (2013)

    Article  Google Scholar 

  7. N S Akbar, S Nadeem, R Ul Haq and S Ye Ain Shams Eng. J. 5 1233 (2014)

    Article  Google Scholar 

  8. A V Rosca and I Pop Int. J. Heat Mass Transf. 65 355 (2013)

    Article  Google Scholar 

  9. A Ishak, R Nazar, N M Arifin and I Pop J. Heat Transf. 129 1212 (2007)

    Article  Google Scholar 

  10. S S Ghadikolaei, K Hosseinzadeh and D D Ganji Case stud. Therm. Eng. 10 595 (2017)

    Article  Google Scholar 

  11. S S Ghadikolaei, K Hosseinzadeh and D D Ganji Powder Technol. 338 425 (2018)

    Article  Google Scholar 

  12. S S Ghadikolaei, K Hosseinzadeh, M Hatami and D D Ganji J. Mol. Liq. 268 813 (2018)

    Article  Google Scholar 

  13. K Hosseinzadeh, M Gholinia, B Jafari, A Ghanbarpour, H Olfian and D D Ganji Heat Transf. Asian Res. 48 744 (2019)

    Article  Google Scholar 

  14. S Naramgari and C Sulochana Alex. Eng. J.  55 819 (2016)

    Article  Google Scholar 

  15. K Bhattacharya, G C Layek and G S Seth Phy. Phy. Scr.  89 (2014)

  16. K V Prasad, K Vajravehu and I Pop Int. J. Appl. Mech. Eng.  18 779 (2013)

    Article  Google Scholar 

  17. S Ghosh, S Mukhopadhyay and K Vajravehu Alex. Eng. J. 55 1835 (2016)

    Article  Google Scholar 

  18. S S Ghadikolaei, K Hosseinzadeh and D D Ganji Powder Technol. 340 389 (2018)

    Article  Google Scholar 

  19. S S Ghadikolaei, K Hosseinzadeh and D D Ganji World J. Eng. 16 51 (2019)

    Article  Google Scholar 

  20. M Gholinia, K Hosseinzadeh, H Mehrzadi, D D Ganji and A A Ranjbar Case Studi. Therm. Eng. 13 100356 (2019)

    Article  Google Scholar 

  21. Hansen A G Similarity Analysis of Boundary Value Problems in Engineering (Englewood Cliffs: Prentice Hall) (1964)

    MATH  Google Scholar 

  22. Shang D Heat and Mass Transfer (Berlin: Springer) (2010)

  23. M J Uddin, M Ferdows and O A Beg Appl. Nanosci. 4 897 (2014)

    Article  ADS  Google Scholar 

  24. M J Uddin, O A Beg, N Amran and A I MD Ismail Can. J Phys. 93 1501 (2015)

    Article  ADS  Google Scholar 

  25. K Das, T Chakraborty and P K Kundu Proc. Natl. Acad. Sci., India Sect. A Phys. Sci. https://doi.org/10.1007/s40010-0472-4 (2018)

  26. D Pal and N Roy Int. J. Appl. Comput. Math.  4 13 (2018)

    Article  Google Scholar 

  27. M Hatami, K Hosseizadeh, G Domairry and M T Behnamfar J. Taiwan Inst. Chem. E 45 2238 (2014)

    Article  Google Scholar 

  28. S S Ghadikolaei, K Hosseinzadeh, M Yassari, H Sadeghi and D D Ganji J. Mol. Liq. 244 374 (2017)

    Article  Google Scholar 

  29. S S Ghadikolaei, M Yassari, H Sadeghi, K Hosseinzadeh and D D Ganji Powder Technol. 322 428 (2017)

    Article  Google Scholar 

  30. S S Ghadikolaei, K Hosseinzadeh, D D Ganji and M Hatami J. Mol. Liq. 258 172 (2018)

    Article  Google Scholar 

  31. S S Ghadikolaei, K Hosseinzadeh, D D Ganji and M Hatami J. Mol. Liq. 262 376 (2018)

    Article  Google Scholar 

  32. S S Ghadikolaei, K Hosseinzadeh, D D Ganji, M Hatami and M Armin J. Mol. Liq. 263 10 (2018)

    Article  Google Scholar 

  33. K Hosseinzadeh, F Afsharpanah, M. Gholinia and D D Ganji Case Stud. Therm. Eng. 12 228 (2018)

    Article  Google Scholar 

  34. S S Ghadikolaei, K Hosseinzadeh and D D Ganji J. Mol. Liq. 272 226 (2018)

    Article  Google Scholar 

  35. A Shojaei, A J Amiri, S S Ardahaie, K Hosseinzadeh and D D Ganji Case Stud. Therm. Eng. 13 100384 (2019)

    Article  Google Scholar 

  36. M Gholinia, S Gholinia, K Hosseinzadeh and D D Ganji Results Phys. 9 1525 (2019)

    Article  ADS  Google Scholar 

  37. K Hosseinzadeh, A Asadi, A R Mogharrebi, J Khalesi, S Mousavisani and D D Ganji Case Stud. Therm. Eng. 14 100482 (2019)

    Article  Google Scholar 

  38. R Derakhshan, A Shojaei, K Hosseinzadeh , M Nimafar and D D Ganji Case Stud. Therm. Eng. 14 100439 (2019)

    Article  Google Scholar 

  39. M R Zangooee, K Hosseinzadeh and D D Ganji Case Studi. Therm. Eng. 14 100460 (2019)

    Article  Google Scholar 

  40. A R Bestman, Int. Center Theor. Phys. 11 257 (1988)

    Google Scholar 

  41. D Pal and B Talukdar Commun. Nonlinear Sci. Numer. Simul. 15 2878 (2010)

    Article  ADS  Google Scholar 

  42. M Awais, T Hayat, S Irum and S Saleem Plos One 10 e0142732 (2015)

Download references

Acknowledgements

I am very thankful to reviewers and editor for keeping this manuscript in new shape with their useful suggestions and recommendations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saleem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tufail, M.N., Saleem, M. & Chaudhry, Q.A. An analysis of Maxwell fluid through a shrinking sheet with thermal slip effect: a Lie group approach. Indian J Phys 95, 725–731 (2021). https://doi.org/10.1007/s12648-020-01745-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01745-z

Keywords

PACS Nos.

Navigation