Skip to main content
Log in

Lie Group Transformation on MHD Double-Diffusion Convection of a Casson Nanofluid over a Vertical Stretching/Shrinking Surface with Thermal Radiation and Chemical Reaction

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper is concern with the study of steady magnetohydrodynamic radiative dissipative boundary layer flow of a reactive Casson nanofluid over a permeable vertical nonlinear stretching/shrinking surface. We have incorporated the combined effects of viscous and Ohmic dissipation, thermophoresis and Brownian motion on heat and mass transfer in Casson nanofluid in the presence of chemical reaction. The governing equations are reduced to a system of nonlinear ordinary differential equations with associated boundary conditions using scaling group transformations. The reduced nonlinear ordinary differential equations are then solved numerically by Runge–Kutta–Fehlberg fifth-order method with shooting technique. The effects of magnetic field, suction/injection parameter, Prandtl number, Eckert number, Brownian motion parameter, thermophoresis parameter and Lewis number on local Nusselt number and local Sherwood number are analyzed. The results show that the physical parameters have significant influence on the flow velocity, surface shear stress, local Nusselt number and local Sherwood number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

b :

Constant related to stretching sheet velocity

C :

Casson nanoparticle volume fraction

\(Cf_x\) :

Skin fraction coefficient

\(C_{w}\) :

Casson nanoparticle volume fraction at the wall

\(C_{\infty }\) :

Free stream Casson nanoparticle volume fraction

\(D_B\) :

Coefficient of Brownian diffusion, m\(^{2}\) s\(^{-1}\)

\(D_T\) :

Coefficient of thermophoretic diffusion, m\(^{2}\) s\(^{-1}\)

f :

Dimensionless stream function

\(p_y\) :

Yield stress of the non-Newtonian fluid

g :

Acceleration due to gravity

R :

Rate of chemical reaction

Le :

Lewis number

Nb :

Brownian motion number

Nr :

Buoyancy ratio number

Nt :

Thermophoresis parameter

\({Nu_x}\) :

Local Nusselt number

Pr :

Prandtl number

\(p_y\) :

Yield stress of the fluid

\({q_r}\) :

Thermal radiative heat flux, W m\(^{-2}\)

\({R_a}\) :

Local Rayleigh number

S :

Suction parameter

T :

Temperature of the fluid, K

\(T_{\infty }\) :

Free stream temperature, K

\(T_w\) :

Temperature at the wall K

u :

Velocity component in x-direction, m s\(^{-1}\)

\({u_w}\) :

Stretching sheet velocity, m s\(^{-1}\)

U :

Free stream velocity of the fluid, m s\(^{-1}\)

v :

Velocity component in y-direction, m s\(^{-1}\)

xy :

Direction along and perpendicular to the plate, respectively

\( {\alpha }\) :

Fluid thermal diffusivity, m\(^{2}\) s\(^{-1}\)

\({\beta }\) :

Coefficient of thermal expansion

\({\gamma }\) :

Casson fluid parameter

\({\gamma _{1}}\) :

Chemical reaction number

\({\eta }\) :

Similarity variable

\(\theta \) :

Dimensionless temperature of Casson nanofluid

\(\kappa \) :

Coefficient of thermal conductivity, W m\(^{-1}\) K\(^{-1}\)

\(\kappa ^{*}\) :

Mean absorption coefficient, m\(^{-1}\)

\({\mu _B}\) :

Plastic dynamic viscosity of Casson nanofluid

\({\nu }\) :

Kinematic viscosity of Casson nanofluid, m\(^{2}\) s\(^{-1}\)

\({\pi _{c}}\) :

Critical value of the product based on the non-Newtonian fluid

\({\rho _{f}}\) :

Density of Casson nanofluid, kg m\(^{-3}\)

\({\rho _{p}}\) :

Casson nanoparticle mass density, kg m\(^{-3}\)

\((\rho c)_f\) :

Heat capacity of Casson nanofluid

\((\rho c)_p\) :

Effective heat capacity of the nanoparticle material

\(\sigma ^*\) :

Stefan–Boltzmann constant, W m\(^{-2}\) K\(^{-4}\)

\(\tau \) :

Parameter defined by ratio between \((\rho c)_p\) and \((\rho c)_f\)

\({\phi }\) :

Dimensionless nanoparticle volume fraction

References

  1. Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  2. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA. ASME, FED 231/MD 66, pp. 99–105 (1995)

  3. Khanafer, K., Vafai, K., Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46, 3639–3653 (2003)

    Article  MATH  Google Scholar 

  4. Kakac, S., Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52, 3187–3196 (2009)

    Article  MATH  Google Scholar 

  5. Nield, D.A., Kuznetsov, A.V.: The Cheng–Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf. 52, 5792–5795 (2009)

    Article  MATH  Google Scholar 

  6. Yirga, Y., Tesfay, D.: Heat and mass transfer in MHD flow of nanofluids through a porous media due to a permeable stretching sheet with viscous dissipation and chemical reaction effects. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 9(5), 693–700 (2015)

    Google Scholar 

  7. Mustafa, M., Khan, J.A.: Model for flow of Casson nanofluid past a non-linearly stretching sheet considering magnetic field effects. AIP Adv. 5, 077148-1–11 (2015)

    Google Scholar 

  8. Kameswarani, P.K., Shaw, S., Sibanda, P.: Dual solutions of Casson fluid flow over a stretching or shrinking sheet. Sadhana 39(6), 1573–1583 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hayat, T., Ashraf, M.B., Shehzad, S.A., Alsaedi, A.: Mixed convection flow of casson nanofluid over a stretching sheet with convectively heated chemical reaction and heat source/sink. J. Appl. Fluid Mech. 8(4), 803–813 (2015)

    Article  Google Scholar 

  10. Das, M., Mahatoa, R., Nandkeolyar, R.: Newtonian heating effect on unsteady hydromagnetic Casson fluid flow past a flat plate with heat and mass transfer. Alex. Eng. J. 54(4), 871–879 (2015)

    Article  Google Scholar 

  11. Khan, U., Khan, S.I., Ahmed, N., Bano, S., Mohyud-Din, S.T.: Heat transfer analysis for squeezing flow of a Casson fluid between parallel plates. Ain Shams Eng. J. 7(1), 497–504 (2016)

    Article  Google Scholar 

  12. Kirubhashankar, C.K., Ganesh, S., Ismail, A.M.: Casson fluid flow and heat transfer over an unsteady porous stretching surface. Appl. Math. Sci. 9(7), 345–351 (2015)

    Google Scholar 

  13. Ramesh, K., Devakar, M.: Some analytical solutions for flows of Casson fluid with slip boundary conditions. Ain Shams Eng. J. 6, 967–975 (2015)

    Article  Google Scholar 

  14. Mukhopadhyay, S.: Effects of thermal radiation on Casson fluid flow and heat transfer over an unsteady stretching surface subjected to suction/blowing. Chin. Phys. B 22(11), 114702 (2013)

    Article  Google Scholar 

  15. Pal, D., Mandal, G., Vajravelu, K.: MHD convectiondissipation heat transfer over a non-linear stretching and shrinking sheets in nanofluids with thermal radiation. Int. J. Heat Mass Transf. 65, 481–490 (2013)

    Article  Google Scholar 

  16. Pramanik, S.: Casson fluid flow and heat transfer past an exponentially porous stretching sheet in presence of thermal radiation. Ain Shams Eng. J. 5, 205–212 (2014)

    Article  Google Scholar 

  17. Pal, D., Mandal, G., Vajravelu, K.: Flow and heat transfer of nanofluids at a stagnation point flow over a stretching/shrinking surface in a porous medium with thermal radiation. Appl. Math. Comput. 238, 208–224 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bhattacharyya, K.: MHD Stagnation-point flow of Casson fluid and heat transfer over a stretching sheet with thermal radiation. J. Thermodyn. Article ID 169674 (2013)

  19. Matin, M.H., Dehsara, M., Abbassi, A.: Mixed convection MHD flow of nanofluid over a non-linear stretching sheet with effects of viscous dissipation and variable magnetic field. Mechanika 18(4), 415–423 (2012)

    Google Scholar 

  20. Das, K., Duari, P.R., Kundu, P.K.: Numerical simulation of nanofluid flow with convective boundary condition. J. Egypt. Math. Soc. 23, 435–439 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Akbar, N.S., Nadeem, S., Haq, R.U., Khan, Z.H.: Radiation effects on MHD stagnation point flow of nano fluid towards a stretching surface with convective boundary condition. Chin. J. Aeronaut. 26(6), 1389–1397 (2013)

    Article  Google Scholar 

  22. Sarojamma, G., Vendabai, K.: Boundary layer flow of a Casson nanofluid past a vertical exponentially stretching cylinder in the presence of a transverse magnetic field with internal heat generation/absorption. Int. J. Mech. Aerosp. Ind. Mechatron. Eng. 9(1), 138–141 (2015)

    Google Scholar 

  23. Immanuel, Y., Pullepu, B., Kirubhashankar, C.K.: Casson flow of MHD fluid moving steadily with constant velocity. Appl. Math. Sci. 9(30), 1503–1508 (2015)

    Google Scholar 

  24. Haq, R.U., Nadeem, S., Khan, Z.H., Okedayo, T.G.: Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet. Central Eur. J. Phys. 12(12), 862–871 (2014)

    Google Scholar 

  25. Khalid, A., Khan, I., Khan, A., Shafie, S.: Unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium. Eng. Sci. Technol. Int. J. 18, 309–317 (2015)

    Article  MATH  Google Scholar 

  26. Hussain, T., Shehzad, S.A., Alsaedi, A., Hayat, T., Ramzan, M.: Flow of Casson nanofluid with viscous dissipation and convective conditions: a mathematical model. J. Central South Univ. 22, 1132–1140 (2015)

    Article  Google Scholar 

  27. Besthapu, P., Bandari, S.: Mixed convection MHD flow of a Casson nanofluid over a nonlinear permeable stretching sheet with viscous dissipation. J. Appl. Math. Phys. 3, 1580–1593 (2015)

    Article  Google Scholar 

  28. Akbar, N.S., Khan, Z.H.: Metachronal beating of cilia under the influence of Casson fluid and magnetic field. J. Magn. Magn. Mater. 378, 320–326 (2015)

    Article  Google Scholar 

  29. Kumar, P.S., Gangadhar, K.: Effect of chemical reaction on slip flow of MHD Casson fluid over a stretching sheet with heat and mass transfer. Adv. Appl. Sci. Res. 6(8), 205–223 (2015)

    Google Scholar 

  30. Sulochana, C., Kishor Kumar, M.K., Sandeep, N.: Nonlinear thermal radiation and chemical reaction effects on MHD 3D Casson fluid flow in porous medium. Chem. Process Eng. Res. 37, 24–36 (2015)

    Google Scholar 

  31. Raju, C.S.K., Sandeep, N., Sugunamma, V., Babu, M.J., Ram, J.V.: Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface. Eng. Sci. Technol. Int. J. https://doi.org/10.1016/j.jestch.2015.05.010 (2015)

  32. Pal, D., Mondal, H.: Effect of variable viscosity on MHD non-Darcy mixed convective heat transfer over a stretching sheet embedded in a porous medium with non-uniform heat source/sink. Commun. Nonlinear Sci. Numer. Simul. 15, 1553–1564 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Abdul-Kahar, R., Kandasamy, R., Muhaimin, I.: Scaling group transformation for boundary-layer flow of a nanofluid past a porous vertical stretching surface in the presence of chemical reaction with heat radiation. Comput. Fluids 52, 15–21 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kandasamy, R., Loganathan, P., Arasu, P.P.: Scaling group transformation for MHD boundary-layer flow of a nanofluid past a vertical stretching surface in the presence of suction/injection. Nucl. Eng. Design 241, 2053–2059 (2011)

    Article  Google Scholar 

  35. Gorla, R.S.R., Sidawi, I.: Free convection on a vertical stretching surface with suction and blowing. Appl. Sci. Res. 52, 247–257 (1994)

    Article  MATH  Google Scholar 

  36. Wang, C.Y.: Free convection on a vertical stretching surface. ZAMM 69, 418–420 (1989)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dulal Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, D., Roy, N. Lie Group Transformation on MHD Double-Diffusion Convection of a Casson Nanofluid over a Vertical Stretching/Shrinking Surface with Thermal Radiation and Chemical Reaction. Int. J. Appl. Comput. Math 4, 13 (2018). https://doi.org/10.1007/s40819-017-0449-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-017-0449-7

Keywords

Navigation