Skip to main content

Advertisement

Log in

Nickel doping effect on properties of sprayed In2S3 films

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Nickel doped In2S3 films have been prepared by the chemical spray pyrolysis technique at 350 °C on glass substrates. The Ni doping level was changed by varying Ni:In molar ratio from 0 to 4% in solution. The structural studies reveal that the Ni-doped In2S3 films are polycrystalline and exhibit a cubic structure. As the Ni:In molar ratio increases, the crystallite size decreases from 27.5 to 23 nm and RMS roughness values increase from 12 to 18 nm, respectively. The presence of Ni in the deposited films was confirmed by energy dispersive spectroscopy. Raman studies show different peaks related to In2S3 phase and do not reveal any secondary phases of In–Ni and Ni–S. The transmission coefficient is about 70–55% in the visible region and 85–75% in near-infrared region. The band gap energy increases from 2.66 to 2.82 eV for direct transitions with the increase of Ni:In ratio from 0 to 4%. The refractive index values of In2S3:Ni thin films decrease from 2.46 to 2.40 and the extinction coefficient values are in the range 0.01–0.20.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S S Wang, F J Shiou, C C Tsao, S W Huang and C Y Hsu Mater. Sci. Semicond. Process. 16 1879 (2013)

    Article  Google Scholar 

  2. L Bhira, H Essaidi, S Belgacem, G Couturier, J Salardenne, N Barreau and J C Bernede Phys. Stat. Sol (a) 181 427 (2000)

    Article  ADS  Google Scholar 

  3. M Roy, B P Mandal, D P Dutta and A K Tyagi Scr. Mater. 63 93 (2010)

    Article  Google Scholar 

  4. M Kraini, N Bouguila, J El Ghoul, I Halidou, S A Gomez-Lopera, C Vázquez-Vázquez, M A López-Quintela and S Alaya J. Mater. Sci. Mater. Electron. 26 5774 (2015)

    Article  Google Scholar 

  5. N Kamoun, S Belgacem, M Amlouk, R Bennaceur, J Bonnet, F Touhari, M Nouaoura and L Lassabatere J. Appl. Phys. 89 2766 (2001)

    Article  ADS  Google Scholar 

  6. S Acharya, M Dutta, S Sarkar, D Basak, S Chakraborty and N Pradhan J. Mater. Chem. 24 1779 (2012)

    Article  Google Scholar 

  7. W T Kim and C D Kim J. Appl. Phys. 60 2631 (1986)

    Article  ADS  Google Scholar 

  8. A A El Sbazly, D A Elhady, H S Metwally and M A M Seyam J. Phys. Condens. Matter 10 5943 (1998)

    ADS  Google Scholar 

  9. M Kilani, B Yahmadi, N K Turki and M Castagné J. Mater. Sci. 46 6293 (2011)

    Article  ADS  Google Scholar 

  10. J Sterner, J Malmström and L Stolt Photovoltaics 13 179 (2005)

    Google Scholar 

  11. E Dalas and L Kobotiatis J. Mater. Sci. 28 6595 (1993)

    Article  ADS  Google Scholar 

  12. K Hara, K Sayama and H Arakawa Sol. Energy Mater. Sol. Cells 62 441 (2000)

    Article  Google Scholar 

  13. D K Nagesha, X Liang, A A Mamedov, G Gainer, M A Eastman, M Giersig, J J Song, T Ni and N A Kotov J. Phys. Chem. B 105 7490 (2001)

    Article  Google Scholar 

  14. F E Osterloh Chem. Mater. 20 35 (2008)

    Article  Google Scholar 

  15. S Acharya, M Dutta, S Sarkar, D Basak, S Chakraborty and N Pradhan Chem. Mater. 24 1779 (2012)

    Google Scholar 

  16. X Fu, X Wang, Z Chen, Z Zhang, Z Li, D Y C Leung, L Wu and X Fu Appl. Catal. B 95 393 (2010)

    Article  Google Scholar 

  17. N Barreau Sol. Energy 83 363 (2009)

    Article  ADS  Google Scholar 

  18. S Cingarapu, M A Ikenberry, D B Hamal, C M Sorensen, K Hohn and K J Klabunde Langmuir 28 3569 (2012)

    Article  Google Scholar 

  19. L J Liu, W D Xiang, J S Zhong, X Y Yang, X J Liang, H T Liu and W Cai J. Alloys Compd. 493 309 (2010)

    Article  Google Scholar 

  20. Z Li, X Tao, Z Wu, P Zhang and Z Zhang Ultrason. Sonochem. 16 221 (2009)

    Article  Google Scholar 

  21. H Spasevska, C C Kitts, C Ancora and G Ruani Int. J. Photoenergy 2012 1 (2011)

    Article  Google Scholar 

  22. A Akkari, C Guasch, M Castagne and N K Turki J. Mater. Sci. 46 6285 (2011)

    Article  ADS  Google Scholar 

  23. A Timoumi, H Bouzouita and B Rezig Thin Solid Films 519 7615 (2011)

    Article  ADS  Google Scholar 

  24. D Perednis and L J Gauckler J. Electroceram. 14 103 (2005)

    Article  Google Scholar 

  25. K Otto, A Katerski, O Volobujeva, A Mere and M Krunks Energy Proc. 3 63 (2011)

    Article  Google Scholar 

  26. J J Lee, J D Lee, B Y Ahn and K H Kim J. Korean Phys. Soc. 53 3255 (2008)

    Article  ADS  Google Scholar 

  27. S Ghosh, M Saha, V D Ashok, A Chatterjee and S K De Nanotechnology 27 155708 (2016)

    Article  Google Scholar 

  28. R Lucena, J C Conesa, I Aguilera, P Palacios and P Wahnon J. Mater. Chem. A 2 8236 (2014)

    Article  Google Scholar 

  29. B Asenjo, J Herrero and M Teresa Gutiérrez Mater. Res. Soc. Symp. Proc. 1165 M05 (2009)

    Article  Google Scholar 

  30. K M A Hussain J Podder and D K Saha Indian J. Phys. 87 141 (2013)

    Article  ADS  Google Scholar 

  31. A Mhamdi, B Ouni, A Amlouk, K Boubaker and M Amlouk J. Alloys Compd. 582 810 (2014)

    Article  Google Scholar 

  32. A Khorsand Zak, W H Abd Majid, M E Abrishami and R Yousefi Solid State Sci. 13 251 (2011)

    Article  ADS  Google Scholar 

  33. K Ravichandran and P Philominathan Sol. Energy 82 1062 (2008)

    Article  ADS  Google Scholar 

  34. V Bilgin, S Kose, F Atay and I Akyuz Mater. Chem. Phys. 94 103 (2005)

    Google Scholar 

  35. P Roy and S K Srivastava Thin Solid Films 496 293 (2006)

    Article  ADS  Google Scholar 

  36. J Alvarez Garcia, A Perez Rodriguez, A Romano-Rodriguez, T Jawhari, J R Morante, R Scheer and W Calvet Thin Solid Films 387 216 (2001)

    ADS  Google Scholar 

  37. Y Xiong, Y Xie, G Du, X Tian and Y Qian J. Solid State Chem. 166 336 (2002)

    Article  ADS  Google Scholar 

  38. K Kambas, J Spyridelis and M Balkanski Phys. Stat. Sol. (b) 105 291 (1981)

    Article  ADS  Google Scholar 

  39. C Guillen and J Herrero Thin Solid Films 510 260 (2006)

    Article  ADS  Google Scholar 

  40. H Tao, H Zang, G Dong, J Zeng and X Zhao J. Optoelectron. Adv. Mater. 2 356 (2008)

    Google Scholar 

  41. M Kraini, N Bouguila, I Halidou, A Moadhen, C Vázquez Vázquez, M A López Quintela and S Alaya J. Electron. Mater. 44 2536 (2015)

  42. M Kraini, N Bouguila, J Koaib, C Vázquez Vázquez, M A López Quintela and S Alaya J. Electron. Mater. 45 5936 (2016)

    Article  ADS  Google Scholar 

  43. H Tao, S Mao, G Dong, H Xiao and X Zhao Solid State Commun. 137 408 (2006)

    Article  ADS  Google Scholar 

  44. Y. Xiong, Y. Xie, G. Du, X. Tian, Y. Qian J. Solid State Chem. 166 336 (2002)

    Article  ADS  Google Scholar 

  45. E. Kärber, K. Otto, A. Katerski, A. Mere, M. Krunks Mater. Sci. Semicond. Process. 25 137 (2013)

    Article  Google Scholar 

  46. S J Ikhmayies and R N Ahmad Bitar Appl. Surf. Sci. 255 2627 (2008)

    Article  ADS  Google Scholar 

  47. M Öztas and M Bedir Thin Solid Films 516 1703 (2008)

    Article  ADS  Google Scholar 

  48. G B Kamath, C M Joseph and C S Menon Mater. Lett. 57 730 (2002)

    Google Scholar 

  49. S Rajeh, A Mhamdi, K Khirouni, M Amlouk and S Guermazi Opt. Laser Technol. 69 113 (2015)

    Article  ADS  Google Scholar 

  50. M Kraini, N Bouguila, I Halidou, A Timoumi and S Alaya Mater. Sci. Semicond. Process. 16 1388 (2013)

    Article  Google Scholar 

  51. F Urbach Phys. Rev. 92 1324 (1953)

    Article  ADS  Google Scholar 

  52. E Yücel and Y Yücel Optik 142 82 (2017)

    Article  ADS  Google Scholar 

  53. H Arizpe-Chavez, R Ramirez-Bon, F J Espinoza-Beltran, O Zelaya-Angel, J L Marin and R Riera J. Phys. Chem. Solids 61 511 (2000)

    Article  ADS  Google Scholar 

  54. U Manzoor, M Islam, L Tabassam and S U Rahman Physica E 41 1669 (2009)

    Article  Google Scholar 

  55. J Koaib, N Bouguila, M Kraini, A Mhamdi, I Halidou, M Ben Salem, H Bouzouita and S Alaya J. Mater. Sci. Mater. Electron. 27 9216 (2016)

    Google Scholar 

  56. C Guillén, T Garcia, J Herrero, M T Gutiérrez and F Briones Thin Solid Films 451 112 (2004)

    Article  ADS  Google Scholar 

  57. P J L Herve and L K J Vandamme J. Appl. Phys. 77 5476 (1995)

    Article  ADS  Google Scholar 

  58. S P Nehra, S Chander, A Sharma and M S Dhaka Mater. Sci. Semicond. Process. 40 26 (2015)

    Article  Google Scholar 

  59. M M El-Nahass, B A Khalifa, H S Soliman and M A M Seyam Thin Solid Films 515 1796 (2006)

    Article  ADS  Google Scholar 

  60. A Timoumi, H Bouzouita and B Rezig Aust. J. Basic Appl. Sci. 7 448 (2013)

    Google Scholar 

  61. N Bouguila, M Kraini, A Timoumi, I Halidou, C Vázquez Vázquez, M A López Quintela and S Alaya J. Mater. Sci. Mater. Electron. 26 7639 (2015)

    Google Scholar 

  62. M Bedir, M Özta¸ D Korkmaz and Y Özdemir Arab. J. Sci. Eng. 39 503 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kraini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraini, M., Bouguila, N. & El Ghoul, J. Nickel doping effect on properties of sprayed In2S3 films. Indian J Phys 92, 989–997 (2018). https://doi.org/10.1007/s12648-018-1195-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1195-3

Keywords

PACS Nos.

Navigation