Advertisement

Indian Journal of Physics

, Volume 92, Issue 8, pp 989–997 | Cite as

Nickel doping effect on properties of sprayed In2S3 films

  • M. Kraini
  • N. Bouguila
  • J. El Ghoul
Original Paper

Abstract

Nickel doped In2S3 films have been prepared by the chemical spray pyrolysis technique at 350 °C on glass substrates. The Ni doping level was changed by varying Ni:In molar ratio from 0 to 4% in solution. The structural studies reveal that the Ni-doped In2S3 films are polycrystalline and exhibit a cubic structure. As the Ni:In molar ratio increases, the crystallite size decreases from 27.5 to 23 nm and RMS roughness values increase from 12 to 18 nm, respectively. The presence of Ni in the deposited films was confirmed by energy dispersive spectroscopy. Raman studies show different peaks related to In2S3 phase and do not reveal any secondary phases of In–Ni and Ni–S. The transmission coefficient is about 70–55% in the visible region and 85–75% in near-infrared region. The band gap energy increases from 2.66 to 2.82 eV for direct transitions with the increase of Ni:In ratio from 0 to 4%. The refractive index values of In2S3:Ni thin films decrease from 2.46 to 2.40 and the extinction coefficient values are in the range 0.01–0.20.

PACS Nos.

78.20.-e 68.37.Ps 68.37.Hk 81.15.−z 

Keywords

Ni doped In2S3 Spray pyrolysis Structural properties Morphological proprieties Optical properties 

References

  1. [1]
    S S Wang, F J Shiou, C C Tsao, S W Huang and C Y Hsu Mater. Sci. Semicond. Process. 16 1879 (2013)CrossRefGoogle Scholar
  2. [2]
    L Bhira, H Essaidi, S Belgacem, G Couturier, J Salardenne, N Barreau and J C Bernede Phys. Stat. Sol (a) 181 427 (2000)ADSCrossRefGoogle Scholar
  3. [3]
    M Roy, B P Mandal, D P Dutta and A K Tyagi Scr. Mater. 63 93 (2010)CrossRefGoogle Scholar
  4. [4]
    M Kraini, N Bouguila, J El Ghoul, I Halidou, S A Gomez-Lopera, C Vázquez-Vázquez, M A López-Quintela and S Alaya J. Mater. Sci. Mater. Electron. 26 5774 (2015)CrossRefGoogle Scholar
  5. [5]
    N Kamoun, S Belgacem, M Amlouk, R Bennaceur, J Bonnet, F Touhari, M Nouaoura and L Lassabatere J. Appl. Phys. 89 2766 (2001)ADSCrossRefGoogle Scholar
  6. [6]
    S Acharya, M Dutta, S Sarkar, D Basak, S Chakraborty and N Pradhan J. Mater. Chem. 24 1779 (2012)CrossRefGoogle Scholar
  7. [7]
    W T Kim and C D Kim J. Appl. Phys. 60 2631 (1986)ADSCrossRefGoogle Scholar
  8. [8]
    A A El Sbazly, D A Elhady, H S Metwally and M A M Seyam J. Phys. Condens. Matter 10 5943 (1998)ADSGoogle Scholar
  9. [9]
    M Kilani, B Yahmadi, N K Turki and M Castagné J. Mater. Sci. 46 6293 (2011)ADSCrossRefGoogle Scholar
  10. [10]
    J Sterner, J Malmström and L Stolt Photovoltaics 13 179 (2005)Google Scholar
  11. [11]
    E Dalas and L Kobotiatis J. Mater. Sci. 28 6595 (1993)ADSCrossRefGoogle Scholar
  12. [12]
    K Hara, K Sayama and H Arakawa Sol. Energy Mater. Sol. Cells 62 441 (2000)CrossRefGoogle Scholar
  13. [13]
    D K Nagesha, X Liang, A A Mamedov, G Gainer, M A Eastman, M Giersig, J J Song, T Ni and N A Kotov J. Phys. Chem. B 105 7490 (2001)CrossRefGoogle Scholar
  14. [14]
    F E Osterloh Chem. Mater. 20 35 (2008)CrossRefGoogle Scholar
  15. [15]
    S Acharya, M Dutta, S Sarkar, D Basak, S Chakraborty and N Pradhan Chem. Mater. 24 1779 (2012)Google Scholar
  16. [16]
    X Fu, X Wang, Z Chen, Z Zhang, Z Li, D Y C Leung, L Wu and X Fu Appl. Catal. B 95 393 (2010)CrossRefGoogle Scholar
  17. [17]
    N Barreau Sol. Energy 83 363 (2009)ADSCrossRefGoogle Scholar
  18. [18]
    S Cingarapu, M A Ikenberry, D B Hamal, C M Sorensen, K Hohn and K J Klabunde Langmuir 28 3569 (2012)CrossRefGoogle Scholar
  19. [19]
    L J Liu, W D Xiang, J S Zhong, X Y Yang, X J Liang, H T Liu and W Cai J. Alloys Compd. 493 309 (2010)CrossRefGoogle Scholar
  20. [20]
    Z Li, X Tao, Z Wu, P Zhang and Z Zhang Ultrason. Sonochem. 16 221 (2009)CrossRefGoogle Scholar
  21. [21]
    H Spasevska, C C Kitts, C Ancora and G Ruani Int. J. Photoenergy 2012 1 (2011)CrossRefGoogle Scholar
  22. [22]
    A Akkari, C Guasch, M Castagne and N K Turki J. Mater. Sci. 46 6285 (2011)ADSCrossRefGoogle Scholar
  23. [23]
    A Timoumi, H Bouzouita and B Rezig Thin Solid Films 519 7615 (2011)ADSCrossRefGoogle Scholar
  24. [24]
    D Perednis and L J Gauckler J. Electroceram. 14 103 (2005)CrossRefGoogle Scholar
  25. [25]
    K Otto, A Katerski, O Volobujeva, A Mere and M Krunks Energy Proc. 3 63 (2011)CrossRefGoogle Scholar
  26. [26]
    J J Lee, J D Lee, B Y Ahn and K H Kim J. Korean Phys. Soc. 53 3255 (2008)ADSCrossRefGoogle Scholar
  27. [27]
    S Ghosh, M Saha, V D Ashok, A Chatterjee and S K De Nanotechnology 27 155708 (2016)CrossRefGoogle Scholar
  28. [28]
    R Lucena, J C Conesa, I Aguilera, P Palacios and P Wahnon J. Mater. Chem. A 2 8236 (2014)CrossRefGoogle Scholar
  29. [29]
    B Asenjo, J Herrero and M Teresa Gutiérrez Mater. Res. Soc. Symp. Proc. 1165 M05 (2009)CrossRefGoogle Scholar
  30. [30]
    K M A Hussain J Podder and D K Saha Indian J. Phys. 87 141 (2013)ADSCrossRefGoogle Scholar
  31. [31]
    A Mhamdi, B Ouni, A Amlouk, K Boubaker and M Amlouk J. Alloys Compd. 582 810 (2014)CrossRefGoogle Scholar
  32. [32]
    A Khorsand Zak, W H Abd Majid, M E Abrishami and R Yousefi Solid State Sci. 13 251 (2011)ADSCrossRefGoogle Scholar
  33. [33]
    K Ravichandran and P Philominathan Sol. Energy 82 1062 (2008)ADSCrossRefGoogle Scholar
  34. [34]
    V Bilgin, S Kose, F Atay and I Akyuz Mater. Chem. Phys. 94 103 (2005)Google Scholar
  35. [35]
    P Roy and S K Srivastava Thin Solid Films 496 293 (2006)ADSCrossRefGoogle Scholar
  36. [36]
    J Alvarez Garcia, A Perez Rodriguez, A Romano-Rodriguez, T Jawhari, J R Morante, R Scheer and W Calvet Thin Solid Films 387 216 (2001)ADSGoogle Scholar
  37. [37]
    Y Xiong, Y Xie, G Du, X Tian and Y Qian J. Solid State Chem. 166 336 (2002)ADSCrossRefGoogle Scholar
  38. [38]
    K Kambas, J Spyridelis and M Balkanski Phys. Stat. Sol. (b) 105 291 (1981)ADSCrossRefGoogle Scholar
  39. [39]
    C Guillen and J Herrero Thin Solid Films 510 260 (2006)ADSCrossRefGoogle Scholar
  40. [40]
    H Tao, H Zang, G Dong, J Zeng and X Zhao J. Optoelectron. Adv. Mater. 2 356 (2008)Google Scholar
  41. [41]
    M Kraini, N Bouguila, I Halidou, A Moadhen, C Vázquez Vázquez, M A López Quintela and S Alaya J. Electron. Mater. 44 2536 (2015)Google Scholar
  42. [42]
    M Kraini, N Bouguila, J Koaib, C Vázquez Vázquez, M A López Quintela and S Alaya J. Electron. Mater. 45 5936 (2016)ADSCrossRefGoogle Scholar
  43. [43]
    H Tao, S Mao, G Dong, H Xiao and X Zhao Solid State Commun. 137 408 (2006)ADSCrossRefGoogle Scholar
  44. [44]
    Y. Xiong, Y. Xie, G. Du, X. Tian, Y. Qian J. Solid State Chem. 166 336 (2002)ADSCrossRefGoogle Scholar
  45. [45]
    E. Kärber, K. Otto, A. Katerski, A. Mere, M. Krunks Mater. Sci. Semicond. Process. 25 137 (2013)CrossRefGoogle Scholar
  46. [46]
    S J Ikhmayies and R N Ahmad Bitar Appl. Surf. Sci. 255 2627 (2008)ADSCrossRefGoogle Scholar
  47. [47]
    M Öztas and M Bedir Thin Solid Films 516 1703 (2008)ADSCrossRefGoogle Scholar
  48. [48]
    G B Kamath, C M Joseph and C S Menon Mater. Lett. 57 730 (2002)Google Scholar
  49. [49]
    S Rajeh, A Mhamdi, K Khirouni, M Amlouk and S Guermazi Opt. Laser Technol. 69 113 (2015)ADSCrossRefGoogle Scholar
  50. [50]
    M Kraini, N Bouguila, I Halidou, A Timoumi and S Alaya Mater. Sci. Semicond. Process. 16 1388 (2013)CrossRefGoogle Scholar
  51. [51]
    F Urbach Phys. Rev. 92 1324 (1953)ADSCrossRefGoogle Scholar
  52. [52]
    E Yücel and Y Yücel Optik 142 82 (2017)ADSCrossRefGoogle Scholar
  53. [53]
    H Arizpe-Chavez, R Ramirez-Bon, F J Espinoza-Beltran, O Zelaya-Angel, J L Marin and R Riera J. Phys. Chem. Solids 61 511 (2000)ADSCrossRefGoogle Scholar
  54. [54]
    U Manzoor, M Islam, L Tabassam and S U Rahman Physica E 41 1669 (2009)CrossRefGoogle Scholar
  55. [55]
    J Koaib, N Bouguila, M Kraini, A Mhamdi, I Halidou, M Ben Salem, H Bouzouita and S Alaya J. Mater. Sci. Mater. Electron. 27 9216 (2016)Google Scholar
  56. [56]
    C Guillén, T Garcia, J Herrero, M T Gutiérrez and F Briones Thin Solid Films 451 112 (2004)ADSCrossRefGoogle Scholar
  57. [57]
    P J L Herve and L K J Vandamme J. Appl. Phys. 77 5476 (1995)ADSCrossRefGoogle Scholar
  58. [58]
    S P Nehra, S Chander, A Sharma and M S Dhaka Mater. Sci. Semicond. Process. 40 26 (2015)CrossRefGoogle Scholar
  59. [59]
    M M El-Nahass, B A Khalifa, H S Soliman and M A M Seyam Thin Solid Films 515 1796 (2006)ADSCrossRefGoogle Scholar
  60. [60]
    A Timoumi, H Bouzouita and B Rezig Aust. J. Basic Appl. Sci. 7 448 (2013)Google Scholar
  61. [61]
    N Bouguila, M Kraini, A Timoumi, I Halidou, C Vázquez Vázquez, M A López Quintela and S Alaya J. Mater. Sci. Mater. Electron. 26 7639 (2015)Google Scholar
  62. [62]
    M Bedir, M Özta¸ D Korkmaz and Y Özdemir Arab. J. Sci. Eng. 39 503 (2014)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Laboratory of Physics of Materials and Nanomaterials Applied at Environment, Faculty of SciencesGabes UniversityGabèsTunisia
  2. 2.Department of Physics, College of SciencesAl Imam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia

Personalised recommendations