Skip to main content
Log in

RF dual-gate-trench LDMOS on InGaAs with improved performance

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A new power dual-gate-trench LDMOSFET (DGTLDMOS) structure implemented on emerging InGaAs material is proposed. The proposed device consists of two gates out of which one gate is placed horizontally on the surface while other gate is located vertically in a trench. The dual-gate structure of DGTLDMOS creates two channels in p-base which carry current simultaneously from drain to source. This not only enhances the drain current (ID) but also reduces specific on-resistance (Ron,sp) and improves the peak transconductance (gm) resulting higher cut-off frequency (fT) and maximum oscillation frequency (fmax). Another trench filled with Al2O3 is placed in the drift region between gate and drain to enhance reduced-surface-field effect leading to higher breakdown voltage (Vbr) even at increased drift region doping. Based on 2D simulations, it is demonstrate that a DGTLDMOS designed for Vbr of 90 V achieves 2.2 times higher ID, 10 times reduction in Ron,sp, 1.8 times improvement in gm, 2.8 times increase in fT, and 1.8 times improvement in fmax with 3.3 times reduction in cell pitch as compared to the conventional LDMOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T Erlbacher (Springer International Publishing) 59 209 (2014)

  2. J J Komiak IEEE Radio and Wireless Symposium (RWS) p 23 (2015)

  3. C Yin, J Wei, K Zhou and X Lou Electron. Lett. 51 1348 (2015)

    Article  Google Scholar 

  4. Y Hu, G Wang, S Chang, H Wang and Q Huang Micro Nano Lett. 7 628 (2012)

    Article  Google Scholar 

  5. J Park, K Ko, J Eum, K Lee, J Jin and Y Kim, et al. IEEE 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD) p 149 (2015)

  6. Y F Guo, J Yao, B Zhang, H Lin and C Zhang IEEE Electron Device Lett. 39 262 (2015)

    Article  ADS  Google Scholar 

  7. B Duan and Y Yang Micro Nano Lett. 6 881 (2011)

    Article  Google Scholar 

  8. A A Orouji and M Mehrad IEEE Trans. Electron Devices 59 419 (2011)

    Article  ADS  Google Scholar 

  9. A A Orouji and M Mehrad Superlattices Microstruct. 51 412 (2012)

    Article  ADS  Google Scholar 

  10. M Mehrad and A A Orouji Superlattices Microstruct. 57 77 (2013)

    Article  ADS  Google Scholar 

  11. M Zareiee, A A Orouji and M Mehrad J. Comput. Electron. 15 611 (2016)

    Article  Google Scholar 

  12. M Mehrad and A A Orouji Curr. Appl. Phys. 12 1340 (2012)

    Article  ADS  Google Scholar 

  13. M Mehrad, A A Orouji and M Taheri Mater. Sci. Semicond. Process. 34 276 (2015)

    Article  Google Scholar 

  14. M Mehrad Mater. Sci. Semicond. Process. 30 599 (2015)

    Article  Google Scholar 

  15. A A Orouji and M Mehrad Superlattices Microstruct. 72 336 (2014)

    Article  ADS  Google Scholar 

  16. M Mehrad and A A Orouji Mater. Sci. Semicond. Process. 16 1977 (2013)

    Article  Google Scholar 

  17. M Mehrad Phys. E Low Dimens. Syst. Nanostruct. 75 196 (2016)

    Article  ADS  Google Scholar 

  18. M Mehrad Superlattices Microstruct. 91 193 (2016)

    Article  ADS  Google Scholar 

  19. M Punetha and Y Singh 19th International Symposium on VLSI Design and Test (VDAT) p 1 (2015)

  20. K M Chen, B Y Chen and C S Chiu IEEE Electron Device Lett. 34 1085 (2013)

    Article  ADS  Google Scholar 

  21. M Zierak, N Feilchenfeld, C Li and T Letavic IEEE 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD) p 337 (2015)

  22. Z Jiang, B Behin-Aein, Z Krivokapic, M Povolotskyi and G Klimeck IEEE Trans. Electron Devices 62 525 (2015)

    Article  ADS  Google Scholar 

  23. M S Adhikari and Y Singh Electron. Lett. 51 1203 (2015)

    Article  Google Scholar 

  24. K K Bhuwalka, Z Wu and H Noh IEEE Trans. Electron Devices 62 2816 (2015)

    Article  ADS  Google Scholar 

  25. A Dehzangi, M F M R Wee, N Wichmann, S Bollaert, M R Buyong and B Y Majlis Micro Nano Lett. 9 181 (2014)

    Article  Google Scholar 

  26. Y Singh and M Badiyari Microelctron. J. 46 404 (2015)

    Article  Google Scholar 

  27. Y Singh and M S Adhikari Comput. Electron. 13 155 (2013)

    Article  Google Scholar 

  28. ATHENA User’s Manual: Process Simulation Software Silvaco Int. Santa Clara, CA (2010)

  29. ATLAS User’s Manual: Device Simulation Software Silvaco Int. Santa Clara, CA (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Payal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payal, M., Singh, Y. RF dual-gate-trench LDMOS on InGaAs with improved performance. Indian J Phys 92, 151–157 (2018). https://doi.org/10.1007/s12648-017-1086-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1086-z

Keywords

PACS Nos.

Navigation