Skip to main content
Log in

Some analytic models of relativistic compact stars

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We present charged anisotropic Durgapal IV interior solutions of the general relativistic field equations in curvature coordinates. These exact solutions can be used to model stable and well-behaved compact stars. Using these solutions we have presented models of well-known neutron and quark stars such as PSR J1903+0327, RX-J1856.5-3754, PSR B1913+16, PSR J0737-3039A and Cyg X-2. The equation of state (EoS) corresponding to the modeled objects are studied using their compression moduli. According to our solutions it is found that the EoS for Cyg X-2 (neutron star) is stiffer than any other object presented and therefore more massive. Furthermore, the EoS for RX J1856.5-3754 (Quark star) is the softest one, rendering it least massive. These solutions satisfy all the energy conditions. Finally, all our presented stellar models satisfy the equilibrium condition of Cooperstock and de la Cruz i.e. M 2 > Q 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K N Singh and N Pant Astrophys. Space Sci. 358 1 (2015)

    Article  Google Scholar 

  2. H J Efinger Zeitschrift fur Physik 188 3137 (1965)

  3. O Gron Gen. Relativ. Gravit. 18 591 (1986)

  4. J P de Leon Gen. Relativ. Gravit. 19 797 (1987)

  5. R Roy et al. Indian J. Pure Appl. Math. 27 1119 (1996)

    MathSciNet  Google Scholar 

  6. H A Buchdahl Phys. Rev. 116 1027 (1959)

  7. H Andreasson J. Differ. Equ. 245 2243 (2008)

  8. B V Ivanov Phys. Rev. D 65 104001 (2002)

  9. W B Bonnor Mon. Not. R. Astron. Soc. 137 239 (1965)

  10. A L Mehra Phys. Lett. A88 159161 (1982)

  11. P S Florides J. Phys. A16 1419 (1983)

  12. F C Cooperstock and V de la Cruz Gen. Relativ. Gravit. 9 835 (1978)

  13. A Mitra New Astron. 12 146 (2006)

  14. F Hoyle and W A Fowler Mon. Not. R. Astron. Soc. 125 16 (1963)

    Google Scholar 

  15. W A Fowler Astrophys. J. 144 180 (1966)

  16. A Mitra Phys. Rev. D 74 024010 (2006)

  17. K N Singh and N Pant Astrophys. Space Sci. 355 171 (2015)

    Article  ADS  Google Scholar 

  18. D N Pant and B C Tewari Astrophys. Space Sci. 163 223(1989)

    Article  ADS  MathSciNet  Google Scholar 

  19. N Pant and B C Tiwari Astrophys. Space Sci. 331 645 (2010)

    Article  ADS  Google Scholar 

  20. R Kippenhahn and A Weigert Stellar Structure and Evolution (Berlin: Springer) (1990)

    Book  MATH  Google Scholar 

  21. A I Sokolov JETP Lett. 79 1137 (1980)

  22. R F Sawyer Phys. Rev. Lett. 29 382 (1972)

  23. R Ruderman Annu. Rev. Astron. Atrophys. 10 427 (1972)

  24. F Weber Pulsars as Astrophysical Observatories for Nuclear and Particle Physics (Bristol: Institute of Physics Publishing) (1999)

  25. D G Yakovlev Electrical conductivity of neutron star core and evolution of internal magnetic fields in Neutron Stars: Theory and Observation, edited by J. Ventura and D. Pines (Dordrecht: Kluwer) 235 (1991)

  26. D G Yakovlev Kinetic properties of neutron stars, in Strongly Coupled Plasma Physics, edited by H.M. VanHorn and S. Ichimaru (Rochester: University of Rochester Press) 157 (1993)

  27. S Chandrasekhar and E Fermi Astrophys. J. 118 116 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  28. G Baym and S A Chin Phys. Lett. B 62 241244 (1976)

    Article  Google Scholar 

  29. B D Keister and L S Kisslinger Phys. Lett. 64B 117 (1976)

    Article  ADS  Google Scholar 

  30. E Witten Phys. Rev. D 30 272 (1984)

  31. K Dev and G Marcelo Gen. Relativ. Gravit. 34.11 1793 (2002)

  32. K Dev and G Marcelo Gen. Relativ. Gravit. 35.8 1435 (2003)

  33. G Marcelo and K Dev IJMP D 13.07 1389 (2004)

  34. L Herrera and N O Santos Phys. Rep. 286 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  35. N Pradhan and N Pant Astrophys. Space Sci. 356 67 (2015)

    Article  ADS  Google Scholar 

  36. K N Singh et al. Int. J. Astrophys. Space Sci. 3 13 (2015)

    Google Scholar 

  37. K N Singh et al. Int. J. Theor. Phys. 54 3408 (2015)

    Article  Google Scholar 

  38. N Pant et al. J. Gravity 380320 9 (2014)

    Google Scholar 

  39. S D Maharaj and M Govender Aust. J. Phys. 50 959 (1997)

    ADS  Google Scholar 

  40. S D Maharaj and M Govender Int. J. Mod. Phys. D 14 667 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  41. P M Takisa, S D Maharaj and S Ray Astrophys. Space Sci. 354 463 (2014)

    ADS  Google Scholar 

  42. P M Takisa and S D Maharaj Astrophys. Space Sci. 343 569 (2013)

    Article  ADS  Google Scholar 

  43. S D Maharaj, J M Sunzu and S Ray Eur. J. Plus 129 3 (2014)

    Article  Google Scholar 

  44. J M Sunzu, S D Maharaj and S Ray Astrophys. Space Sci. 352 719 (2014)

    Article  ADS  Google Scholar 

  45. J M Sunzu, S D Maharaj and S Ray Astrophys. Space Sci. 354 517 (2014)

    Article  ADS  Google Scholar 

  46. S A Ngubelanga, S D Maharaj and S Ray Adv. Math. Phys. 905168 (2013)

  47. P Kustaanheimo and B Qvist Comment. Phys. Math. Helsingf 13 1 (1948)

    MathSciNet  Google Scholar 

  48. S A Ngubelanga and S D Maharaj Eur. Phys. J. Plus 130 211 (2015)

    Article  Google Scholar 

  49. H Bondi Proc. R. Soc. A 281 39 (1964)

  50. M Esculpi et al. Gen. Relativ. Gravit. 39 633 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  51. M C Durgapal J. Phys. A Math. Gen. 15 2637 (1982)

  52. P Haensel et al. Neutron Star 1: Equation of State and Structure (USA: Springer) (2007)

    Book  Google Scholar 

  53. P C C Freire et al. Mon. Not. R. Astron. Soc. 412 2763 (2011)

    Article  ADS  Google Scholar 

  54. K Kohri Prog. Theor. Phys. 109(5) 756 (2003)

  55. J M Weisberg et al. Astrophys. J. 722 1030 (2010)

    Article  ADS  Google Scholar 

  56. M Burgay et al. Nature 426 531 (2003)

    Article  ADS  Google Scholar 

  57. J Casares et al. Mon. Not. R. Astron. Soc. 401 2517 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

KNS and NP acknowledge their gratitude to Professor O. P. Shukla, Principal, National Defence Academy (NDA), for his motivation and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K.N., Pant, N. & Govender, M. Some analytic models of relativistic compact stars. Indian J Phys 90, 1215–1223 (2016). https://doi.org/10.1007/s12648-016-0870-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-016-0870-5

Keywords

PACS Nos.

Navigation