Skip to main content
Log in

Ab initio and DFT study to understand the physics behind the conformational barriers of isobutyl cyanide molecule

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Origin of the conformational barrier of isobutyl cyanide (IBCN) molecule has been investigated. Ab initio and density functional theory calculations predict the existence of two minima on the potential energy surface corresponding to trans-gauche (TG) and gauche-gauche (GG) rotameric forms and one enantiomeric gauche-trans (GT) form of the IBCN molecule. The barrier heights between TG and GG, TG and GT are estimated as 5.7 and 3.78 kcal/mol respectively. Origin of conformational barrier of molecule has been studied by partial relaxations and with the aid of nuclear virial and natural bond orbital analysis technique. The relaxations of C1–C2 bond and C1–C2–C3 and C1–C2–C4 bond angles are estimated to play a pivotal role for conformational barrier of the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B Dutta, R De, C Pal and J Chowdhury Spectrochim. Acta A 96 837 (2012)

    Google Scholar 

  2. D R Lide J. Chem. Phys. 33 1519 (1960)

    Google Scholar 

  3. A Dadie Monatsh Chem. 51 437 (1931)

  4. G A Crowder J. Phy. Chem. 75 2806 (1971)

    Google Scholar 

  5. J R Durig and Y S Li J. Mol. Struct. 21 289 (1974)

  6. G A Crowder J. Mol. Struct. (Theochem) 200 235 (1989)

    Google Scholar 

  7. K B Robert, J L Pardus, J August, T Brupbacher and W J Jager J. Mol. Struct. 413-414 293 (1997)

    Google Scholar 

  8. J Som and D K Mukherjee Indian J. Phys. 48 887 (1974)

  9. Y Sert, F Ucum and M Boyukata Indian J. Phys. 87 113 (2013)

  10. P Anbarasan, P S Kumar, K Vasudevan, R Govindan and V Aroulmoji Indian J. Phys. 85 1477 (2011)

    Google Scholar 

  11. T Rasheed and S Ahmad Indian J. Phys85 239 (2011)

  12. J R Durig, S X Zhou, G A Guirgis and C J Wurrey J. Phys. Chem. A 115 2297 (2011)

    Google Scholar 

  13. M Karabacak, E Postalcilar and M Cinar Spectrochim. Acta A 85 261 (2012)

    Google Scholar 

  14. M Karabacak and E Yilan Spectrochim. Acta A 87 273 (2012)

  15. V Pophristic, L Goodman and N Guchhait J. Phys. Chem. A 101 4290 (1997)

    Google Scholar 

  16. A Chakraborty, R De and N Guchhait Chem. Phy. Lett. 432 616 (2006)

  17. Y Mo Comput. Mol. Sci. 1 164 (2011)

  18. V Pophristic, and L Goodman Nature 411 565 (2001)

  19. V Pophristic, L Goodman, L Gorb and J Leszczynski J. Chem. Phys. 116 7049 (2002)

    Google Scholar 

  20. V Pophristic and L Goodman J. Phys. Chem. A 107 3538 (2003)

  21. L Goodman and V Pophristic J. Phys. Chem. A 109 1223 (2005)

    Google Scholar 

  22. L Goodman, V Pophristic and F. Weinhold Acc. Chem. Res. 32 983 (1999)

  23. A E Reed and F Weinhold J. Chem. Phys. 83 1736 (1985)

    Google Scholar 

  24. A E Reed, L A Curtiss and F Weinhold Chem. Rev. 88 899 (1988)

  25. J P Foster and F J Weinhold Am. Chem. Soc. 102 7211 (1980)

    Google Scholar 

  26. L Goodman, T Kundu and J. Leszczynski J. Phys. Chem. 100 2770 (1996)

    Google Scholar 

  27. A E Reed and F J Weinhold Chem. Phys. 78 4066 (1993)

  28. J K Badenhoop and F J Weinhold Chem. Phys. 107 5422 (1997)

    Google Scholar 

  29. M J Frisch et al, Gaussian 03 (Pittsburgh: Gaussian, Inc.) (2003)

  30. C Mǿller and M S Plesset Phys. Rev. 46 618 (1934)

  31. A D Backe J. Chem. Phys. 98 5648 (1993)

    Google Scholar 

  32. C Lee, W Yang and RG. Parr Phys. Rev. B 37 785 (1988)

  33. C Moule et al., J. Chem. Phys. 95 3137 (1991)

  34. L Goodman and V Pophristic The Encyclopedia of Computational Chemistry IV 2577 (1998)

  35. J K Badenhoop and F J Weinhold Chem. Phys. 107 5406 (1997)

    Google Scholar 

  36. L Goodman and V Pophristic Chem. Phys. Lett. 259 287 (1996)

  37. V Pophristic, L Goodman and N Guchhait J. Phys. Chem. 101 92 (1996)

    Google Scholar 

  38. D Guo and L Goodman J. Phys. Chem. 100 12540 (1996)

  39. L Goodman and H Gu J. Chem. Phys. 109 72 (1998)

  40. A E Reed and F Wienhold Isr. J. Chem. 31 277 (1991)

Download references

Acknowledgments

J.C. would like to thank the University Grant Commission, Government of India, for financial support through a research project [Project No. F. PSW-046/08-09 (ERO)] J.C. also likes to thank Department of Atomic Energy-Board of Research in Nuclear Sciences for financial support through the Research (Project No. 2012/37P/27/BRNS/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chowdhury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, B., De, R. & Chowdhury, J. Ab initio and DFT study to understand the physics behind the conformational barriers of isobutyl cyanide molecule. Indian J Phys 87, 855–863 (2013). https://doi.org/10.1007/s12648-013-0299-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-013-0299-z

Keywords

PACS Nos.

Navigation