Skip to main content
Log in

Track-etch membranes as templates enabled nano/micro technology: a review

  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Many techniques are being used in order to synthesize nano-micro materials falling under the realm of nanotechnology. It need not be overemphasized that the miniaturization of devices and synthesis of new materials have a tremendous role in the development of powerful electronics as well as material based technologies in other areas but for the laws of quantum mechanics posing limitations besides the increasing cost and difficulties in manufacturing in such a small scale. The quest, therefore, for the alternative technologies, have stimulated a surge of interest in nano-meter scale materials and devices in the recent years. Metallic as well as semiconducting nano wires are the most attractive materials because of their unique properties having myriad of applications like interconnects for nano-electronics, magnetic devices, chemical and biosensors, whereas the hollow tubules are equally considered to be candidates for more potent applications — both in physical as well as biosciences. Materials’ processing for nano-structured devices is indispensable to their rational design. The technique, known as “Template Synthesis”, using electrochemical-electro less deposition is one of the most important processes for manufacturing nano-micro structures, nano-composites and devices and is relatively inexpensive and simple. The technique involves using membranes — ion crafted ones (popularly known as Particle Track-Etch Membranes or Nuclear Track Filters), alumite substrate membranes, besides other types of membranes as templates. The parameters viz., diameter as well as length i.e., aspect ratio, shape and wall surface traits in these membranes are controllable.

In the present article a detailed review of this technique using track-etch membranes as templates in synthesis of nano-micro materials including hybrid materials and devices like field-ion emitters, resonant tunneling diodes (RTDs) etc. is presented including most of the results obtained in our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huixin He and Nongjian J Tao Encyclopedia of Nanoscience and Nanotechnology (ed.) H S Nalwa, Vol. 1 (USA: Academic Press) (2000)

    Google Scholar 

  2. R Landauer J. Phys. Conden. Mat. 1 8089 (1989)

    ADS  Google Scholar 

  3. S K Chakarvarti and J Vetter Radiat. Meas. 29 149 (1998)

    Article  Google Scholar 

  4. C R Martin Chem. Mater. 8 1739 (1996)

    Article  Google Scholar 

  5. C J Brumlik, V P Menon and C Rmartin J. Mater. Res. 9 1174 (1994)

    Article  ADS  Google Scholar 

  6. S K Chakarvarti and J Vetter J. Micromech. Microengg. 3 57 (1993)

    Article  ADS  Google Scholar 

  7. Sanjeev Kumar, Shyam Kumar and S K Chakarvarti Current Sci. 87 642 (2004)

  8. Sanjeev Kumar, Shyam Kumar and S K Chakarvarti J. Mat. Sci. Lett. 39 2951 (2004)

    ADS  Google Scholar 

  9. Sanjeev Kumar, Shyam Kumar and S K Chakarvarti J. Mat. Sci. Lett. 39 3257 (2004)

    ADS  Google Scholar 

  10. Sanjeev Kumar, Shyam Kumar and S K Chakarvarti Phys. Lett. A327 198 (2004)

    ADS  Google Scholar 

  11. Sanjeev Kumar, D L Zagorski, Shyam Kumar and S K Chakarvarti J. Mat. Sci. Lett. 39 6137 (2004)

    ADS  Google Scholar 

  12. Sanjeev Kumar, Shyam Kumar and S K Chakarvarti J. Optoelectronics and Advanced Materials 6 13 (2004)

    Google Scholar 

  13. G S Sekhon, N K Verma, S K Chakarvarti and Sunil Kumar Atti Delia “Fondazione Giorgio Ronchi” 59 529 (2004)

    Google Scholar 

  14. Rajesh Kumar Vijay Kumar and S K Chakarvarti J. Mat. Sci. Lett. 40 3523 (2005)

    ADS  Google Scholar 

  15. S K Chakarvarti Vijay Kumar and Sanjeev Kumar J. Mat. Sci. 40 503 (2005)

    Article  ADS  Google Scholar 

  16. Rajesh Kumar and Shiv Kumar Chakarvarti Attidella “Fondazione Giorgio Ronchf 2005 LXI 31 (2006)

  17. Meeru Chaudhri, A Vohra, S K Chakarvarti and Rajesh Kumar J. Mat. Sci.: Materials in Electronics 17(12) 993 (2006)

    Article  Google Scholar 

  18. G A Ozin Adv. Mater. 4 612 (1992)

    Article  Google Scholar 

  19. C A J Foss Metal Nanoparticles Synthesis, Characterization and Applications (USA: Marcel Dekker) (2002)

    Google Scholar 

  20. E Braun, Y Eichen, U Salvan and G Ben-Yoseph Nature 391 775 (1998)

    Article  ADS  Google Scholar 

  21. Sfullam, D Cottel, H Rensmo and D Fitzmaurice Adv. Mater. 12 1430 (2000)

    Article  Google Scholar 

  22. M P Zach, K H Ng and R M Penner Science 290 2120 (2000)

    Article  ADS  Google Scholar 

  23. D Bera, S C Kuiry and S Seal JOM Jan (2004) http://www.tms.org/pubs/journals/JOM/0401/Bera-0401.html

  24. G C Hhadjipanayis and R W Siegle Nanophase Materials: Synthesis, Properties, Applications Series E: Applied Sciences (Dordrecht) (1994)

  25. C R Martin, L S Van Dyke, Z Cai and W Liang J. Am. Chem. Soc. 112 8976 (1990)

    Article  Google Scholar 

  26. R V Parthasarthy, K L N Phani and C R Martin Adv. Mater. 7 896 (1995)

    Article  Google Scholar 

  27. C Schonenberger, B M I Vander Zande, L G J Fokkink, M Henny, C Schmid, M Kruger, A Bachtold, R Huber, H Birk and U Staufer J. Phys. Chem. B101 5407 (1997)

    Google Scholar 

  28. M Sima, I Enculescu, C Trautmann and R Neumann J. Optoelectronics Adv. Mater. 6 121 (2004)

    Google Scholar 

  29. C P Bean, U S Patent No. 34 83 095 (1969)

  30. G E Possin Rev. Sci. Instrum. 41 772 (1970)

    Article  ADS  Google Scholar 

  31. W D Willaims and N Giordano Rev. Sci. Instrum. 55 410 (1984)

    Article  ADS  Google Scholar 

  32. R M Penner and C R Martin Anal. Chem. 59 2625 (1987)

    Article  Google Scholar 

  33. J D Klien, R D Herrick II, D Palmer, M J Sailor, C J Brumlik and C R Martin Chem. Mat. 5 902 (1993)

    Article  Google Scholar 

  34. A Huczko Appl. Phys. A70 365 (2000)

    ADS  Google Scholar 

  35. R Spohr Ion Tracks and Microtechnology: Basic Principles and applications (Vieweg: Wiesbaden) (1990)

    Google Scholar 

  36. C R Martin Science 266 1961 (1994)

    Article  ADS  Google Scholar 

  37. A Despic and V Parkhutik Modern Aspects of Electrochemistry (eds.) J O Bockris, R E White and B E (New York: Conway Plenum) (1989)

    Google Scholar 

  38. R L Fleischer, P B Price and R M Walker Nuclear Tracks in Solids: Principles and Applications (Berkeley: Univ. of Calif. Press) (1975)

    Google Scholar 

  39. B E Fischer and R Spohr Rev. Mod. Phys. 55 907 (1983)

    Article  ADS  Google Scholar 

  40. P B Price Rad. Meas. 40 146 (2005)

    Article  Google Scholar 

  41. E Ferain and R Legras Nucl. Instr. Meth. Phys. Res. B208 115 (2003)

    Article  ADS  Google Scholar 

  42. D Linkot, M Forment and H Cashet Adv. Electrochem. Sci. Eng. 6 167 (1999)

    Google Scholar 

  43. B Bercu, I Enculescu and R Spohr Nucl. Instrum. Meth. Phys. Res. B225 497 (2004)

    ADS  Google Scholar 

  44. R Spohr US Patent No. 43 38 164 (1982)

  45. S K Chakarvarti and J Vetter Nucl. Instrum. Meth. Phys. Res. B62 109 (1991)

    ADS  Google Scholar 

  46. T M Whitney, J S Jiang, P C Searson and C L Chien Science 261 1316 (1993)

    Article  ADS  Google Scholar 

  47. D Dobrev, J Vetter and N Angert GSI Sci. Rep. 1994 (Darmstadt: Germany) (1995)

    Google Scholar 

  48. A L Prieto, M S Sander, M S Martin-Gonzalez, R Gronsky, T Sands and A M Stay J. Am. Chem. Soc. 123 7160 (2001)

    Article  Google Scholar 

  49. L Piraux, J M George, J F Despres, C Leory, E Ferain and R Legras Appl. Phys. Lett. 65 2484 (1994)

    Article  ADS  Google Scholar 

  50. A J Yin, J Li, W Jian, A J Bennet and J M Xu Appl. Phys. Lett. 79 1039 (2001)

    Article  ADS  Google Scholar 

  51. K Nielsch, F Muller, A-P Li and U Gosele Adv. Mater. 12 582 (2000)

    Article  Google Scholar 

  52. S K Chakarvarti, S Amrita Kaur and J K Quamara, Paper at Seminar on Current Developments in Disordered Materials (CDDM) (Kurukshetra University, Kurukshetra: India) (1996)

    Google Scholar 

  53. Sanjeev Kumar, Rajesh Kumar, Shyam Kumar and S K Chakarvarti J. Mat. Sci. Lett. 40 525 (2004)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Chakarvarti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakarvarti, S.K. Track-etch membranes as templates enabled nano/micro technology: a review. Indian J Phys 83, 737–749 (2009). https://doi.org/10.1007/s12648-009-0030-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-009-0030-2

Keywords

PACS Nos.

Navigation