Skip to main content
Log in

Assessment of Radon (222Rn) and Thoron (220Rn) in Environmental Resources of a High-Background-Radiation Area, India

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

The cornerstone of the study is to quantify the 222Rn/220Rn levels and the associated health risk in the environment of a heavy mineral-rich area in India. 222Rn and 220Rn activity was measured in environmental resources like soil, water, and indoor air. The analysis was performed using a well-calibrated online 222Rn/220Rn monitor (RAD 7) which is having a solid-state semiconductor detector system. The 222Rn depth profile in soil gas and exhalation rates of 222Rn and 220Rn from soil were monitored. The measured 222Rn activity in the indoor air of the study area concluded an effective radiation dose of 0.44–1.81 mSv.y−1 and an ELCR of 0.17–0.7%. Groundwater and surface waters from the high-background-radiation area were also analysed for dissolved 222Rn activity which contributes to a total radiation dose from 2.7 to 21.4 µSv.y−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sources and Effect of Ionising Radiation. Report to general assembly, with scientific annexes. UNSCEAR, 2000, United Nations, New York.

  2. I.R. Santos, W.C. Burnett and J.M. Godoy, Radionuclides as tracers of coastal processes in Brazil: review, synthesis, and perspectives. Braz. J. Oceanogr., 56 (2008) 115–131.

    Article  MATH  Google Scholar 

  3. R.M. Anjos, R. Veiga, C. Carvalho, K.D. Macario and P.R.S. Gomes, Geological provenance of Quaternary deposits from the south eastern Brazilian coast. Nucl. Phys. A, 787 (2007) 642–647.

    Article  ADS  MATH  Google Scholar 

  4. M.N. Alam, M.I. Chowdhury, M. Kamal, S. Ghose, M.N. Islam, M.N. Mustafa, M.M.H. Miah and M.M. Ansary, The 226Ra, 232Th and 40K activities in beach sand minerals and beach soils of Cox’s Bazar, Bangladesh. J. Environ. Radioact., 46 (1999) 243–250.

    Article  CAS  Google Scholar 

  5. S. Singh, A. Rani and R.K. Mahajan, 226Ra, 232Th and 40K analysis in soil samples from some areas of Punjab and Himachal Pradesh, India using gamma ray spectrometry. Radiat. Meas., 39 (2005) 431–439.

    Article  CAS  Google Scholar 

  6. UNSCEAR, UNSCEAR 2000 report to the General Assembly Vol I. Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation (2000).

  7. F. Oner, H.A. Yalim, A. Akkurt and M. Orbay, The measurements of radon concentrations in drinking water and the Yesilirmak river water in the area of Amasya in Turkey. Radiat Protection Dosimetry., 133 (2009) 223–226.

    Article  CAS  Google Scholar 

  8. G. Sciocchetti, G.F. Clemente, G. Ingrao and F. Scacco, Results of a survey on radioactivity of building materials in Italy. Health Phys., 45(2) (1983) 385–388.

    Article  CAS  PubMed  Google Scholar 

  9. G.A. Swedjemark and L. Mjönes, Radon and radon daughter concentration in Swedish homes. Radiat. Prot. Dosim., 7(1–4) (1984) 341–345.

    Article  CAS  Google Scholar 

  10. UNITED NATIONS SCIENTIFIC COMMITTEE ON THE EFFECTS OF ATOMIC RADIATION, UNSCEAR 2006 Report, Volume II, Annex E: Sourcesto-effects assessment for radon in homes and workplaces. United Nations ed., New York (2009).

  11. UNITED NATIONS SCIENTIFIC COMMITTEE ON THE EFFECTS OF ATOMIC RADIATION, Ionizing radiation: sources and biological effects, UNSCEAR 1982 Report to the General Assembly, with annexes. Annex E: Exposures to radon and thoron and their decay products. United Nations ed., New York, E.82.IX.8 (1982).

  12. S. Mohapatra, S.K. Sahoo, J.S. Dubey et al., Assessment of radon concentration and external gamma radiation level around a high background radiation area (HBRA), Odisha, India and its radiological significance. J. Radioanal. Nucl. Chem., 307 (2016) 151–159.

    Article  CAS  MATH  Google Scholar 

  13. Y. Omori, G. Prasad, A. Sorimachi, SK. Sahoo, T. Ishikawa, D. Vidya Sagar, RC. Ramola, S. Tokonami, Long-term measurements of residential radon, thoron, and thoron progeny concentrations around the Chhatrapur placer deposit, a high background radiation area in Odisha, India. J. Environ. Radioact., 162 (2016) 371–378.

  14. N. Sulekha Rao, D. Sengupta, Seasonal levels of radon and thoron in the dwellings along southern coastal Orissa, Eastern India. Appl. Radiat. Isot., 68(1) (2010) 28–32.

  15. S.D. Kanse, B.K. Sahoo, J.J. Gaware, et al. A study of thoron exhalation from monazite-rich beach sands of High Background Radiation Areas of Kerala and Odisha, India. Environ Earth Sci., 75 (2016) Article no-1465.

  16. S. Sherafat, S. Nemati Mansour, M. Mosaferi, N. Aminisani, Z. Yousefi and S. Maleki, First indoor radon mapping and assessment excess lifetime cancer risk in iran. MethodsX, 6 (2019) 2205–2216.

    Article  PubMed  PubMed Central  Google Scholar 

  17. J. H. Harley, In Richard Edward Stanley; A. Alan Moghissi, Noble Gases. U.S. Environmental Protection Agency. (1975) p. 111.

  18. B.A. Moed, W.W. Nazaroff, R.G. Sextro, Soil as a source of indoor radon: Generation, migration and entry, Radon and its Decay Products in Indoor Air (W.W. Nazaroff, A.V. Nero Jr., Eds), John Wiley and Sons, New York (1988) 57–112.

  19. S. Akihiro, KY. YuuIshimori, A Comprehensive Review of Radon Emanation Measurements for Mineral, Rock, Soil, Mill Tailing and Fly Ash. Appl. Radiat. Isot., 69(10) (2011) 1422–1435.

  20. M.A. Hamid Khan and M.S. Chowdhury, Radon measurements in some areas in Bangladesh. Radiat. Meas., 43 (2008) 410–413.

    Article  MATH  Google Scholar 

  21. H. Kudo, S. Tokonami et al., Comparative dosimetry for radon and thoron in high background radiation area. Radiat. Protect. Dosim., 167 (2015) 155–159.

    Article  CAS  MATH  Google Scholar 

  22. S. Shafik and N.A. Irzooqi, Measurement of radon, thoron and their progeny concentrations using twin cup dosimeter for indoor Al-Madaan city-Baghdad-Iraq, Iraqi. J. Phys., 14 (2016) 24–32.

    Google Scholar 

  23. F. Khan, N. Ali, E.U. Khan, N.U. Khattak, I.A. Raja, M.A. Baloch et al., Study of indoor radon concentrations and associated health risks in the five districts of Hazara Division, Pakistan. J. Environ. Monit., 14 (2012) 3015–3023.

    Article  CAS  PubMed  MATH  Google Scholar 

  24. M. Nejatolahi, F. Mehrjo, A. Sheykhi and F.V. Alamdarlo, Measurement of indoor radon concentration levels and effective dose assessment in the Zanjan city. Iran. J. Environ. Pollut. Hum. Health, 3 (2015) 1–3.

    CAS  Google Scholar 

  25. S.H. Alharbi, R.A. Akber, Radon and thoron concentrations in public workplaces in Brisbane, Australia. J. Environ. Radioact., 144 (2015) 69–76.

  26. N. Celik, U. Cevik, A. Celik, B. Kucukomeroglu, Determination of indoor radon and soil radioactivity levels in Giresun, Turkey. J. Environ. Radioact., 99(8) (2008) 1349–1354.

  27. M. Ramsiya, A. Joseph and P.J. Jojo, Estimation of indoor radon and thoron in dwellings of Palakkad, Kerala, India using solid state nuclear track detectors. J Radiat Res. Appl. Sci., 10(3) (2017) 269–272.

    CAS  Google Scholar 

  28. M. Műllerová, K. Kozak, T. Kovács, I. Smetanová, A. Csordás, D. Grzadziel, M. Neznal, Attila Moravcsík and Martin Neznal, Neznal, Matej Indoor radon survey in Visegrad countries. Appl. Radiat. Isot., 110 (2016) 124–128.

    Article  PubMed  Google Scholar 

  29. K. Rajesh, R.L. Patnaik, A.K. Shukla and A.H. Khan, Indoor radon levels and gamma radiation in uranium mineralized belt around Jaduguda. Jharkhand State. Environ. Geochem., 9(1) (2006) 84–87.

    Google Scholar 

  30. M.C. SubbaRamu, G.N. Shaikh and T.S. Muraleedharan. Ramachandran TV Rad Prot, 10 (1987) 49–52.

    Google Scholar 

  31. Y. Narayana et al., Seasonal variation of radon levels in coastal Karnataka on the south-west coast of India. Radiat. Meas., 29(1) (1998) 19–25.

    Article  MathSciNet  CAS  MATH  Google Scholar 

  32. M. Adelikhah, A. Shahrokhi, M. Imani, S. Chalupnik, T. Kovács, Radiological assessment of indoor radon and thoron concentrations and indoor radon map of dwellings in Mashhad, Iran. Int. J. Environ. Res. Public Health., 18 (2021) 141.

  33. D. Gibbons and R. Kalin, A survey of Radon-222 in ground water from the Sherwood sandstone aquifer: belfast and Newtownards. Northern Ireland. Groundw. Monit. Remediat., 17 (1997) 88–92.

    Article  CAS  MATH  Google Scholar 

  34. L. Salonen, Natural radionuclides in groundwaters in Finland. Radiat. Prot. Dosim., 24 (1988) 163–166.

    Article  CAS  MATH  Google Scholar 

  35. ISO 13164-3, Water quality-radon-222-Part 1-3. International Organization for Standardization, Geneva (2013).

  36. P. Nandakumaran and N. Vinayachandran, A preliminary appraisal of radon concentration in groundwater from the high background radiation area (HBRA) of coastal Kerala. J. Geol. Soc. India, 95(5) (2020) 491–496.

    Article  CAS  Google Scholar 

  37. P. Singh, P. Singh, B.K. Sahoo and B.S. Bajwa, A study on uranium and radon levels in drinking water sources of a mineralized zone of Himachal Pradesh, India. J. Radioanal. Nucl. Chem., 309 (2016) 541–549.

    CAS  MATH  Google Scholar 

  38. N.K. Sethy, V.N. Jha, P.M. Ravi and R.M. Tripathi, Assessment of human exposure to dissolved radon in groundwater around uranium industry of Jadaguda, Jharkhand, India. Curr. Sci., 109 (2015) 1855–1860.

    Article  CAS  Google Scholar 

  39. D. Vikas, M. Rohit and R. Asha, Analysis of radon concentration in drinking water in Hanumangarh district of Rajasthan India. Radiat. Protect. Environ., 36(2) (2013) 65–70.

    Article  MATH  Google Scholar 

  40. G. Wallner and G. Steininger, Radium isotopes and 222Rn in Austrian drinking waters. J. Radioanal. Nucl. Chem., 274 (2007) 511–516.

    Article  CAS  MATH  Google Scholar 

  41. M. Beyermann, T. Bünger, K. Schmidt and D. Obrikat, Occurrence of natural radioactivity in public water supplies in Germany: 238U, 234U, 235U, 228Ra, 226Ra, 222Rn, 210Pb, 210Po and gross alpha activity. Radiat. Prot. Dosim., 141 (2010) 72–81.

    Article  CAS  Google Scholar 

  42. D.L. Henshaw, J. Perryman, P.A. Keitch, J.E. Allen and G.C. Camplin, Radon in domestic water supplies in the UK. Radiat. Prot. Dosim., 46 (1993) 285–289.

    CAS  Google Scholar 

  43. I. Kobal, J. Vaupotic, D. Mitic, J. Kristan, M. Ancik, S. Jerancic and M. Skofljanec, Natural radioactivity of fresh waters in Slovenia, Yugoslavia. Environ. Int., 16 (1990) 141–154.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abinash Sahu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prusty, P., Sahu, A. & Jha, S.K. Assessment of Radon (222Rn) and Thoron (220Rn) in Environmental Resources of a High-Background-Radiation Area, India. MAPAN 39, 139–148 (2024). https://doi.org/10.1007/s12647-023-00691-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-023-00691-5

Keywords

Navigation