Skip to main content
Log in

Devices for Interim Check of Coordinate Measuring Machines: A Systematic Review

  • Review Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

To guarantee the reliability of the measurements made with CMM, the machines must be periodically checked and calibrated, to evaluate the performance and obtain optimized measurement results. However, the main obstacles encountered to ensure these accuracies are the development and implementation of periodic calibration practices and interim checking methods that guarantee the traceability of measurements. Therefore, this systematic review aims to find scientific evidence that contributes to answering the research question: “What type of device is more suitable for performing interim checks on CMM?”. For this, the study will use the methodology of the Systematic Review. In this respect, it was found eleven works (24%) of the final textual corpus, which show the development of checking CMMs, related standards, and measuring instruments. Finally, of the articles with adherence to the research question, only three are highlighted for developing new interim check devices for CMM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.C. Montgomery, Introduction to Statistical Quality Control; Livros Técnicos e Científicos, Rio de Janeiro, (2017)

    MATH  Google Scholar 

  2. A. Albertazzi, AR Sousa, Fundamentals of Scientific and Industrial Metrology. Manole, Barueri (2015).

    Google Scholar 

  3. M. Pizzolato, C.H. Sturm, F.M. Albano D.R. Lakus, Measurement Systems Analysis in the Machining Sector of a Metalworking Company, Engevista 21 (2019) 193–209.

    Google Scholar 

  4. Automotive Industry Action Group (AIAG), QS 9000: Measurement Systems Analysis; Chrysler Group LLC/Ford Motor Company/General Motors Corporation, Michigan, (2010).

    Google Scholar 

  5. K. Ostrowska, A. Gaska, R. Kupiec, J. Sladek, K. Gromczak, Verification of Articulated Arm Coordinate Measuring Machines Accuracy Using Lasertracer System as Standard of Length, MAPAN-J. Metrol. Soc India 31 (2016) 241–256. http://dx.doi.org/10.1007/s12647-016-0176-2

    Article  Google Scholar 

  6. A. Wozniak, J.R.R. Mayer, A Robust Method for Probe Tip Radius Correction in Coordinate Metrology, Meas. Sci. Technol., 23 (2012) 1–8. https://doi.org/10.1088/0957-0233/23/2/025001

    Article  Google Scholar 

  7. P.J. Swornowski, A Critical Look at the Coordinate Measuring Technique, Mechatronics 23 (2013a) 80–93. https://doi.org/10.1016/j.mechatronics.2012.11.002

    Article  Google Scholar 

  8. B. Acko, Calibration of Measurement Instruments on a Coordinate Measuring Machine, Adv. Prod. Eng. Manag., 2 (2007) 127–134.

    Google Scholar 

  9. J.B.D.A. Silva, M. Burdekin, A Modular Space Frame for Assessing the Performance of Co-Ordinate Measuring Machines (CMMs), Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol, 26 (2002) 37–48. http://dx.doi.org/10.1016/S0141-6359(01)00096-4

    Article  Google Scholar 

  10. International Standards Organisation, ISO 17025:2017—General Requirements for the Competence of Testing and Calibration Laboratories, ISO, Geneva, (2017).

    Google Scholar 

  11. ABNT ISO/IEC Guide 99, (2014) International Vocabulary of Metrology—Basic and General Concepts and Associated Terms (VIM). ISO, Rio de Janeiro, (2014).

    Google Scholar 

  12. ISO 10360-2 (2009) Geometrical Product Specifications (GPS)—Acceptance and Reverification Tests for Coordinate Measuring Machines (CMM)—Part 2: CMMs Used for Measuring Linear Dimensions. ISO, Geneva, (2009).

    Google Scholar 

  13. J.B.D.A. Silva, R.J. Hocken, J.A. Miller, G.W. Caskey, P. Ramu, Approach for Uncertainty Analysis and Error Evaluation of Four-Axis Co-Ordinate Measuring Machines, Int. J. Adv. Manuf. Technol. 41 (2009) 1130–1139. http://dx.doi.org/10.1007/s00170-008-1552-z

    Article  Google Scholar 

  14. W. Knapp, A. Wirtz, Accuracy of Length Measurement and Positioning: Statical Measurement and Contouring Mode, CIRP Ann. Manuf. Technol., 37 (1988) 511–514. https://doi.org/10.1016/S0007-8506(07)61689-8

    Article  Google Scholar 

  15. B. Acko, Calibration of Coordinate Measuring Devices in the Laboratory Conditions, Strojniski Vestnik, J. Mech. Eng. 44 (1998) 41–46. http://dx.doi.org/10.1088/0957-0233/16/12/010

    Article  Google Scholar 

  16. B. Acko Uncertainty of Thread Gauge Calibration by Using a Coordinate Measuring Machine, Strojarstvo 46 (2004) 5–10.

    Google Scholar 

  17. P.J. Swornowski, Mapping and Correction of the CMM Workspace Error With The Use of an Electronic Gyroscope and Neural Networks—Practical Application, Scanning 35 (2013b) 222–231. https://doi.org/10.1002/sca.21046

    Article  Google Scholar 

  18. P.J. Swornowski, A New Concept of Continuous Measurement and Error Correction in Coordinate Measuring Technique Using a PC, Measurement 50 (2014) 99–105. https://doi.org/10.1016/j.measurement.2013.12.032

    Article  ADS  Google Scholar 

  19. N.Y. Efremova, Use of the Concept of Measurement Uncertainty in Applied Problems of Metrology, Meas. Tech. 61 (2018) 335–341. https://doi.org/10.1007/s11018-018-1430-5

    Article  Google Scholar 

  20. D. Tranfield, D. Denayer, P. Smart, Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review, British J. Manag., 13 (2003)207–222. https://doi.org/10.1111/1467-8551.00375

    Article  Google Scholar 

  21. S.N. Morioka, D.R. Iritani, A.R. Ometto, M.M. Carvalho, Revisão sistemática da literatura sobre medição de desempenho de sustentabilidade corporativa: uma discussão sobre contribuições e lacunas, Gestão Produção 25 (2018) 284–303. http://dx.doi.org/10.1590/0104-530X2720-18

    Article  Google Scholar 

  22. A.C. Benabdellah, I. Bouhaddou1, A. Benghabrit, O. BenghabritA Systematic Review of Design for X Techniques From 1980 to 2018: Concepts, Applications, and Perspectives, Int. J. Adv. Manuf. Technol., 102 (2019) 3473–3502. https://doi.org/10.1007/s00170-019-03418-6

    Article  Google Scholar 

  23. J. Ma, G.E.O. Kremer, A Systematic Literature Review of Modular Product Design (MPD) From the Perspective of Sustainability, Int. J. Adv. Manuf. Technol. 86 (2016) 1509–1539. https://doi.org/10.1007/s00170-015-8290-9

    Article  Google Scholar 

  24. J.C.A. Biolchini, P.G. Mian, A.C.C. Natali, T.U. Conte, G.H. Travassos, Scientific Research Ontology to Support Systematic Review in Software Engineering, Adv. Eng. Inf., 21 (2007) 133–151. https://doi.org/10.1016/j.aei.2006.11.006

    Article  Google Scholar 

  25. M. Clarke, A.D. Oxman, Cochrane Reviewers. Cochrane Reviewers’ Handbook 4.1.4., Oxford, (2001).

    Google Scholar 

  26. Scimago Journal & Country Rank (2018). URL https://www.scimagojr.com/ (accessed 4.9.2020).

  27. L. Bornmann, W. Marx, HistCite Analysis of Papers Constituting the h Index Research Front, J. Inf. 6 (2012) 285–288. https://doi.org/10.1016/j.joi.2011.11.001

    Article  Google Scholar 

  28. J.J. Jeyasekar, P. Saravanan, Impact of Collaboration on Indian Forensic Science Research: A Scientometric Mapping From 1975 to 2012, J. Sci. Res. 4 (2015) 135–142. https://doi.org/10.4103/2320-0057.174863

    Article  Google Scholar 

  29. B.V. Camargo, A.M. Justo, IRAMUTEQ: um software gratuito para análise de dados textuais, Trends in Psychology 21 (2013) 513–518. http://dx.doi.org/10.9788/TP2013.2-16

    Article  Google Scholar 

  30. A.J. Lotka, The Frequency Distribution of Scientific Productivity, J. Washington Acad. Sci. 16 (1926) 317–323. https://doi.org/10.1002/asi.4630280610

    Article  Google Scholar 

  31. S.C. Bradford, Documentation. Crosby Lockwood, London, (1953).

    Google Scholar 

  32. G.K. Zipf, Human Behaviour and the Principle of Least Effort: An Introduction to Human Ecology. Addison-Wesley Press Inc, Cambridge, (1949).

    Google Scholar 

  33. P. Minetola, M. Galatui, A Challenge for Enhancing the Dimensional Accuracy of a Low-Cost 3D Printer by Means of Self-replicated Parts, Addit. Manuf. 22 (2018) 256–264. https://doi.org/10.1016/j.addma.2018.05.028

    Article  Google Scholar 

  34. P.J. Gray, F. Ismail, S. Bedi, Graphics-Assisted Rolling Ball Method for 5-Axis Surface Machining, Computer-Aided Des. 36 (2004) 653–663. http://dx.doi.org/10.1016/S0010-4485(03)00141-6

    Article  Google Scholar 

  35. D.S. Price, O desenvolvimento da ciência: análise histórica, filosófica, sociológica e econômica, Livros Técnicos e Científicos, Rio de Janeiro, (1976).

    Google Scholar 

  36. D.Z. Zhao, A. Strotmann, Evolution of Research Activities and Intellectual Influences in Information Science 1996–2005: Introducing Author Bibliographic- Coupling Analysis, J. Am. Soc. Inf. Sci. Technol., 59 (2008) 2070–2086. https://doi.org/10.1002/asi.20910

    Article  Google Scholar 

  37. F. Franceschini, D. Maisano, L. Mastrogiacomo, Mobile Spatial Coordinate Measuring System (MScMS) and CMMs: A Structured Comparison, Int. J. Adv. Manuf. Technol., 42 (2009) 1089–1102. https://doi.org/10.1007/s00170-008-1677-0

    Article  MATH  Google Scholar 

  38. T.J. Ko, J.W. Park, H.S. Kim, S.H. Kim, On-Machine Measurement Using a Noncontact Sensor Based on a CAD Model, Int. J. Adv. Manuf. Technol., 32 (2007) 739–746. https://doi.org/10.1007/s00170-005-0383-4

    Article  Google Scholar 

  39. A.J. Abackerli, P.H. Pereira, N. Calonego, A Case Study on Testing CMM Uncertainty Simulation Software (VCMM), J. Brazil. Soc. Mech. Sci. Eng. 32 (2010) 8–14. http://dx.doi.org/10.1590/S1678-58782010000100002

    Article  Google Scholar 

  40. P. Fernández, J.C. Rico, B.J. Álvarez, G. Valiño, S. Mateos, Laser Scan Planning Based on Visibility Analysis and Space Partitioning Techniques, Int. J. Adv. Manuf. Technol., 39, (2008) 699–715. https://doi.org/10.1007/s00170-007-1248-9

    Article  Google Scholar 

  41. K. Hariharan, C. Balaji, Material Optimization: A Case Study Using Sheet Metal- Forming Analysis, J. Mater. Process. Technol., 209 (2009) 324–331. https://doi.org/10.1016/j.jmatprotec.2008.01.063

    Article  Google Scholar 

  42. S.A. Santos, M. Oliveira, A produção científica sobre Língua Brasileira de Sinais (Libras) presente nos currículos Lattes do CNPq, Perspectivas em Ciência da Informação, 22 (2017) 23-46, 2017. http://dx.doi.org/10.1590/1981-5344/2776

    Article  Google Scholar 

  43. T. Erkan, R. Mayer, A. Wozniak, Surface Probing Simulator for the Evaluation of CMM Probe Radius Correction Software, Int. J. Adv. Manuf. Technol. 55 (2011) 307–315. https://doi.org/10.1007/s00170-010-3046-z

    Article  Google Scholar 

  44. F. Hennebelle, T. Coorevits, R. Vincent, Optimizing Step Gauge Measurements and Uncertainties Estimation, Meas. Sci. Technol., 28 (2017) 1-8. https://doi.org/10.1088/1361-6501/28/2/025002

    Article  Google Scholar 

  45. A. Wozniak, J.R.R. Mayer, Discontinuity Check of Scanning in Coordinate Metrology, Measurement, 59 (2015) 284–289. https://doi.org/10.1016/j.measurement.2014.09.050

    Article  ADS  Google Scholar 

  46. Crenna F, Rossi GB, Bovio L (2009) Probabilistic Measurement Evaluation for the Implementation of the Measuring Instrument Directive, Measurement, 42 (2009) 1522–1531. https://doi.org/10.1016/j.measurement.2009.07.012

    Article  ADS  Google Scholar 

  47. K.H. Chen, Investigation of Tool Orientation for Milling Blade of Impeller in Five-Axis Machining, Int. J. Adv. Manuf. Technol., 52 (2011) 235-244. https://doi.org/10.1007/s00170-010-2701-8

    Article  Google Scholar 

  48. T.L.B. Tseng, Y.J. Kwon, Characterization of Machining Quality Attributes Based on Spindle Probe, Coordinate Measuring Machine, and Surface Roughness Data, J. Comput. Des. Eng., 1 (2014) 128-139. https://doi.org/10.7315/JCDE.2014.013

    Article  Google Scholar 

  49. P. Swaminathan, G.K. Narayana, Design and Development of a Gauging System for Constant Velocity Ball Cage Component of Constant Velocity Joint Assembly, Proc. Instit. Mech. Eng. Part B. J. Eng. Manuf. 230 (2016) 1169–1174.

    Article  Google Scholar 

  50. G.R. Chapman, Perturbation Analysis for an Orthogonal Least-Squares Estimator, Canadian J.Statist. Revue Canadienne de Statistique. 23 (1995) 101–108. https://doi.org/10.2307/3315438

    Article  MathSciNet  MATH  Google Scholar 

  51. R.A.E. Aston, J. Davis K.J. Stout, A Probing Question: A Customer’s Investigation into the Directional Variability of a Coordinate Measuring Machine Touch Trigger Probe, Int. J. Mach. Tools Manuf., 37 (1997) 1375–1382. https://doi.org/10.1016/S0890-6955(97)00011-4

    Article  Google Scholar 

  52. F. Franceschini, L. Settineri, Control Charts for the On-line Diagnostics of CMM Performances, Int. J. Comp. Integr. Manuf., 13 (2000) 148–156. http://dx.doi.org/10.1080/095119200129993

    Article  Google Scholar 

  53. J. Mailhe, J.M. Linares, J.M. Sprauel, P. Bourdet, Geometrical Checking by Virtual Gauge, Including Measurement Uncertainties, CIRP Ann.Manuf. Technol., 57 (2008) 513–516. https://doi.org/10.1016/j.cirp.2008.03.112

    Article  Google Scholar 

  54. P. Mikeš, Influence of Stylus System Configuration on the Variability of Measurement Result on CMM, Manuf. Technol., 16 (2016) 184–188. https://doi.org/10.21062/ujep/x.2016/a/1213-2489/MT/16/1/184

  55. Mitutoyo Europe GmbH (2020) Small and medium size CMMs. URL https://mitutoyo.eu/en_us (accessed 4.9.2020).

  56. BS 6808, British Standard. Co-ordinate Measuring Machines Part 2 Methods for verification of performance, 1987.

  57. C.X. Feng, X.F. Wang, Subset Selection in Predictive Modeling of the CMM Digitization Uncertainty, J. Manuf. Syst., 21 (2002) 419–439. https://doi.org/10.1016/S0278-6125(02)80049-8

    Article  Google Scholar 

  58. G. Moroni, W.P. Syam, S. Petro, Performance Verification of a 4-Axis Focus Variation Co-Ordinate Measuring System, IEEE Trans. Instrum. Meas. 66 (2017) 113–121. https://doi.org/10.1109/TIM.2016.2614753

    Article  Google Scholar 

Download references

Funding

The authors thank the Brazilian National Research and Development Council (CNPq) and the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) for the financial support provided in the form of research Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Schons Arenhart.

Ethics declarations

Conflicts of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arenhart, R.S., Pizzolato, M., Menin, P.L. et al. Devices for Interim Check of Coordinate Measuring Machines: A Systematic Review. MAPAN 36, 157–173 (2021). https://doi.org/10.1007/s12647-020-00406-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-020-00406-0

Keywords

Navigation