Skip to main content
Log in

Verification of Articulated Arm Coordinate Measuring Machines Accuracy Using LaserTracer System as Standard of Length

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

This article describes a novel approach to verification of articulated arm coordinate measuring machines (AA CMMs) based on ISO 10360-2 standard. The approach utilizes the LaserTracer (LT) system as standard of length and automation of calibration procedure using an industrial robot. In this method, the robot is programmed to repeatedly move the AA CMM. The retroreflector is integrated with the stylus of AA CMM. Location of the retroreflector is constantly tracked by LaserTracer and, in select positions, the measurements of distance are performed by both the AA CMM and LT system. The verification of AA CMM accuracy is carried out through the comparison of the two measurement values. The developed procedure is recommended mainly for checking AA CMMs with large measuring volume, where the application of common artefacts is usually insufficient, or time-consuming, due to the fact that measurements have to be performed for several subspaces in the AA CMM measuring volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. H. Kunzmann, T. Pfeifer, R. Schmitt, H. Schwenke, and A. Weckenmann, Productive metrology-adding value to manufacture, CIRP Ann. Manuf. Technol., 54(2) (2005) 691–704.

    Article  Google Scholar 

  2. K. Takamasu, Present problems in coordinate metrology for nano and micro scale measurements, MAPAN-J. Metrol. Soc. India, 26(1) (2011) 3–14.

    Google Scholar 

  3. J. Yang, G. Li, B. Wu et al., Efficient methods for evaluating task-specific uncertainty in laser-tracking measurement, MAPAN-J. Metrol. Soc. India, 30(2) (2015) 105–117.

    MathSciNet  Google Scholar 

  4. A. Brau, M. Valenzuela, J. Santolaria, and J.J. Aguilar, Evaluation of different probing systems used in articulated arm coordinate measuring machines, Metrol. Meas. Syst., 21(2) (2014) 233–246.

    Article  Google Scholar 

  5. J. Sładek, Accuracy of coordinate measurements. Publishing House of Cracow University of Technology, Cracow, (2011), pp. 1–495.

    Google Scholar 

  6. X.H. Li, B. Chen, and Z.R. Qiu, The calibration and error compensation techniques for an articulated arm CMM with two parallel rotational axes, Measurement, 46(1) (2013) 603–609.

    Article  Google Scholar 

  7. J. Santolaria, J.J. Aguilar, J.-A. Yague, and J. Pastor, Kinematic parameter estimation technique for calibration and repeatability improvement of articulated arm coordinate measuring machines, Precis. Eng., 32(4) (2008) 251–268.

    Article  Google Scholar 

  8. J. Sładek, K. Ostrowska, and A. Gąska, Modelling and identification of errors of coordinate measuring arms with use of metrological model, Measurement, 46 (2013) 667–679.

    Article  Google Scholar 

  9. F. Romdhani, F. Hennebelle, M. Ge, P. Juillion, R. Coquet, and J.F. Fontaine, Methodology for the assessment of measuring uncertainties of articulated arm coordinate measuring machines, Meas. Sci. Technol., 25(12) (2014) 125008.

    Article  ADS  Google Scholar 

  10. A. Piratelli-Filho, F.H.T. Fernandes, and R.V. Arencibia, Application of virtual spheres plate for AACMMs evaluation, Precis. Eng., 36(2) (2012) 349–355.

    Article  Google Scholar 

  11. R. Acero, A. Brau, J. Santolaria, and M. Pueo, Verification of an articulated arm coordinate measuring machine using a laser tracker as reference equipment and an indexed metrology platform, Measurement, 69 (2015) 52–63.

    Article  Google Scholar 

  12. A. Piratelli-Filho, and G.R. Lesnau, Virtual spheres gauge for coordinate measuring arms performance test, Measurement, 43(2) (2010) 236–244.

    Article  Google Scholar 

  13. D. Gonzalez-Madruga, E. Cuesta, H. Patino, J. Barreiro, and S. Martinez-Pellitero, Evaluation of AACMM using the virtual circles method, Proc. Eng., 63 (2013) 243–251.

    Article  Google Scholar 

  14. E. Cuesta, D. Gonzalez-Madruga, B.J. Alvarez, and J. Barreiro, A new concept of feature-based gauge for coordinate measuring arm evaluation, Meas. Sci. Technol., 25(6) (2014) 065004.

    Article  ADS  Google Scholar 

  15. ISO/DIS 10360-12:2014 Geometrical product specifications (GPS)—acceptance and reverification tests for coordinate measuring systems (CMS)—part 12: articulated arm coordinate measurement machines (CMM).

  16. ASME B89.4.22:2004 Methods for performance evaluation of articulated arm coordinate measuring machines (CMM).

  17. VDI/VDE 2617-9 Accuracy of coordinate measuring machines. Characteristics and their reverification. Acceptance and reverification tests for articulated arm coordinate measuring machines.

  18. ISO 10360-2:2009 Geometrical product specifications (GPS)—acceptance and reverification tests for coordinate measuring machines (CMM)—part 2: CMMs used for measuring linear dimensions.

  19. K. Ostrowska, A. Gąska, R. Kupiec, and J. Sładek, Accuracy assessment of coordinate measuring arms using LaserTracer system, 11th IMEKO TC14 international symposium on measurement and quality control, ISMQC 2013, Cracow and Kielce, Poland (2013), pp. 98–101.

  20. A. Gąska, M. Krawczyk, R. Kupiec, K. Ostrowska, P. Gąska, and J. Sładek, Modeling of the residual kinematic errors of coordinate measuring machines using LaserTracer system, Int. J. Adv. Manuf. Technol., 73 (2014) 497–507.

    Article  Google Scholar 

  21. O. Guarneros, J. De Vicente, M. Maya, J.L. Ocana, C. Molpeceres, J.J. Garcia-Ballesteros, S.R. Rodriguez, and H.M. Duran, Uncertainty estimation for performance evaluation of a confocal microscope as metrology equipment, MAPAN-J. Metrol. Soc. India, 29(1) (2014) 29–42.

    Google Scholar 

  22. G. Moona, R. Sharma, U. Kiran, and K.P. Chaudhary, Evaluation of measurement uncertainty for absolute flatness measurement by using Fizeau Interferometer with phase-shifting capability, MAPAN-J. Metrol. Soc. India, 29(4) (2014) 261–267.

    Google Scholar 

  23. K. Iimura, E. Kataoka, M. Ozaki, and R. Furutani, The uncertainty of parallel model coordinate measuring machine, MAPAN-J. Metrol. Soc. India, 26(1) (2011) 47–53.

    Google Scholar 

  24. ISO/TS 23165:2006 Geometrical product specifications (GPS)—guidelines for the evaluation of coordinate measuring machine (CMM) test uncertainty.

Download references

Acknowledgments

Reported research was realized within confines of project financed by Polish National Centre for Research and Development No. 0869/R/T022010/10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Gąska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostrowska, K., Gąska, A., Kupiec, R. et al. Verification of Articulated Arm Coordinate Measuring Machines Accuracy Using LaserTracer System as Standard of Length. MAPAN 31, 241–256 (2016). https://doi.org/10.1007/s12647-016-0176-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-016-0176-2

Keywords

Navigation