Skip to main content
Log in

Protective Effects of Flavonoid Rutin Against Aminochrome Neurotoxicity

  • Research Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Causes of dopaminergic neuronal loss in Parkinson’s disease (PD) are subject of investigation and the common use of models of acute neurodegeneration induced by neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine, and rotenone contributed to advances in the study of PD. However, the use of study models more similar to the pathophysiology of PD is required for advances in early diagnosis and translational pharmacology. Aminochrome (AMI), a compound derived from dopamine oxidation and a precursor of neuromelanin, is able to induce all the mechanisms associated with neurodegeneration. Previously, we showed AMI is cytotoxic in primary culture of mesencephalic cells (PCMC) and induces in vitro and in vivo neuroinflammation. On the other hand, the effect of rutin in central nervous system cells has revealed anti-inflammatory, antioxidative, and neuroprotective potential. However, there have been no data studies on the effect of rutin against aminochrome neurotoxicity. Here, we show that rutin prevents lysosomal dysfunction and aminochrome-induced cell death in SHSY-5Y cells, protects PCMC against aminochrome cytotoxicity, and prevents in vivo loss of dopaminergic neurons in substantia nigra pars compacta (SNPc), as well as microgliosis and astrogliosis. Additionally, we show that rutin decreases levels of interleukin-1β (IL-1β) mRNA and increases levels of glia-derived neurotrophic factor (GDNF) and nerve-derived neurotrophic factor (NGF) mRNA. We evidence for the first time the protective effect of rutin on PD aminochrome-induced models and suggest the potential role of the anti-inflammatory activity and upregulation of NGF and GDNF in the mechanism of rutin action against aminochrome neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and analyzed in this study are available from the corresponding author upon reasonable request.

References

  • Arriagada C et al (2004) On the neurotoxicity mechanism of leukoaminochrome o-semiquinone radical derived from dopamine oxidation: mitochondria damage, necrosis, and hydroxyl radical formation. Neurobiol Dis 16(2):468–477

    Article  CAS  PubMed  Google Scholar 

  • Aydin BS, Bulduk I (2020) A validated HPLC-UV method for determination of dopamine HCl in injectable solutions. Eurasian J Bio Chem Sci 3(2):116–120

  • Bhidayasiri R, Martinez-Martin P (2017) Clinical assessments in Parkinson’s disease: scales and monitoring. Int Rev Neurobiol 132:129–182

    Article  CAS  PubMed  Google Scholar 

  • Briceño A et al (2016) Aminochrome toxicity is mediated by inhibition of microtubules polymerization through the formation of adducts with tubulin. Neurotox Res 29(3):381–393

    Article  PubMed  Google Scholar 

  • Chaudhuri KR et al (2006) International multicenter pilot study of the first comprehensive self-completed nonmotor symptoms questionnaire for Parkinson’s disease:the NMSQuest study. Movement Disorders: Official Journal of the Movement Disorder Society 21(7):916–923

    Article  PubMed  Google Scholar 

  • Costa SL et al (2016) Impact of plant-derived flavonoids on neurodegenerative diseases. Neurotox Res 30(1):41–52

    Article  CAS  PubMed  Google Scholar 

  • Croisier E et al (2005) Microglial inflammation in the Parkinsonian substantia nigra: relationship to alpha-synuclein deposition. J Neuroinflammation 2(1):1–8

    Article  Google Scholar 

  • Cuenca L et al (2018) Parkinson’s disease: a short story of 200 years. Histol Histopathol 34(6):573–591

    PubMed  Google Scholar 

  • Cuevas C et al (2015) Glutathione transferase-M2-2 secreted from glioblastoma cell protects SH-SY5Y cells from aminochrome neurotoxicity. Neurotox Res 27(3):217–228

    Article  CAS  PubMed  Google Scholar 

  • da Silva AB et al (2017) The flavonoid rutin modulates microglial/macrophage activation to a CD150/CD206 M2 phenotype. Chem Biol Interact 274:89–99

    Article  Google Scholar 

  • da Silva AB et al (2020) The flavonoid rutin and its aglycone quercetin modulate the microglia inflammatory profile improving antiglioma activity. Brain Behav Immun 85:170–185

    Article  PubMed  Google Scholar 

  • de Araújo FM et al (2018) Aminochrome decreases NGF, GDNF, and induces neuroinflammation in organotypic midbrain slice cultures. Neurotoxicology 66:98–106

    Article  PubMed  Google Scholar 

  • de Araújo FM et al (2021) Role of microgliosis and NLRP3 inflammasome in Parkinson’s disease pathogenesis and therapy. Cell Mol Neurobiol p. 1–18

  • De Araújo FM et al (2022) Aminochrome induces neuroinflammation and dopaminergic neuronal loss: a new preclinical model to find anti-inflammatory and neuroprotective drugs for Parkinson’s disease. Cell Mol Neurobiol p. 1–17

  • Dıaz-Véliz G et al (2002) Behavioral effects of aminochrome and dopachrome injected in the rat substantia nigra. Pharmacol Biochem Behav 73(4):843–850

    Article  PubMed  Google Scholar 

  • Elkouzi A et al (2019) Emerging therapies in Parkinson’s disease—repurposed drugs and new approaches. Nat Rev Neurol 15(4):204–223

    Article  PubMed  PubMed Central  Google Scholar 

  • Enogieru AB et al (2018) Rutin as a potent antioxidant: implications for neurodegenerative disorders. Oxid Med Cell Longev 2018

  • Enogieru AB et al (2021) Regulation of AKT/AMPK signaling, autophagy and mitigation of apoptosis in rutin-pretreated SH-SY5Y cells exposed to MPP+. Metab Brain Dis 36(2):315–326

    Article  CAS  PubMed  Google Scholar 

  • Ferreira RS et al (2021) Rutin improves glutamate uptake and inhibits glutamate excitotoxicity in rat brain slices. Mol Biol Rep 48(2):1475–1483

    Article  CAS  PubMed  Google Scholar 

  • Gil-Martínez AL et al (2018) Unexpected exacerbation of neuroinflammatory response after a combined therapy in old Parkinsonian mice. Front Cell Neurosci 12:451

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrera A et al (2016) Aminochrome induces dopaminergic neuronal dysfunction: a new animal model for Parkinson’s disease. Cell Mol Life Sci 73(18):3583–3597

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Soto A et al (2017) On the role of DT-diaphorase inhibition in aminochrome-induced neurotoxicity in vivo. Neurotox Res 32(1):134–140

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection?. The Lancet Neurology 8(4):382–397

    Article  CAS  PubMed  Google Scholar 

  • Huenchuguala S et al (2014) Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction. Autophagy 10(4):618–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huenchuguala S et al (2016) DT-diaphorase protects astrocytes from aminochrome-induced toxicity. Neurotoxicology 55:10–12

    Article  CAS  PubMed  Google Scholar 

  • Javed H et al (2012) Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience 210:340–352

    Article  CAS  PubMed  Google Scholar 

  • Karabiyik C, Lee MJ, Rubinsztein DC (2017) Autophagy impairment in Parkinson’s disease. Essays Biochem 61(6):711–720

    Article  PubMed  Google Scholar 

  • Khan M et al (2012) Rutin protects dopaminergic neurons from oxidative stress in an animal model of Parkinson’s disease. Neurotox Res 22(1):1–15

    Article  PubMed  Google Scholar 

  • Lang G-P, Li C, Han Y-Y (2021) Rutin pretreatment promotes microglial M1 to M2 phenotype polarization. Neural Regen Res 16(12):2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecca D et al (2018) Boosting phagocytosis and anti-inflammatory phenotype in microglia mediates neuroprotection by PPARγ agonist MDG548 in Parkinson’s disease models. Br J Pharmacol 175(16):3298–3314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. San Diego, Calif. https://doi.org/10.1006/meth.2001.1262

  • Macdonald R et al (2018) Mitochondrial abnormalities in Parkinson’s disease and Alzheimer’s disease: can mitochondria be targeted therapeutically?. Biochem Soc Trans 46(4):891–909

    Article  CAS  PubMed  Google Scholar 

  • Magalingam KB, Radhakrishnan A, Haleagrahara N (2013) Rutin, a bioflavonoid antioxidant protects rat pheochromocytoma (PC-12) cells against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. Int J Mol Med 32(1):235–240

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra KK et al (2021) The lysosome as an imperative regulator of autophagy and cell death. Cell Mol Life Sci 78(23):7435–7449

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Martin P et al (2017) Measurement of nonmotor symptoms in clinical practice. Int Rev Neurobiol 133:291–345

    Article  PubMed  Google Scholar 

  • Meléndez C, Muñoz P, Segura-Aguilar J (2019) DT-diaphorase prevents aminochrome-induced lysosome dysfunction in SH-SY5Y cells. Neurotox Res 35(1):255–259

    Article  PubMed  Google Scholar 

  • Menzies FM et al (2017) Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93(5):1015–1034

    Article  CAS  PubMed  Google Scholar 

  • Moghbelinejad S et al (2014) Rutin activates the MAPK pathway and BDNF gene expression on beta-amyloid induced neurotoxicity in rats. Toxicol Lett 224(1):108–113

    Article  CAS  PubMed  Google Scholar 

  • Moosavi F et al (2016) Modulation of neurotrophic signaling pathways by polyphenols. Drug Des Dev Ther 10:23

    CAS  Google Scholar 

  • Muñoz P et al (2015) DT-diaphorase prevents aminochrome-induced alpha-synuclein oligomer formation and neurotoxicity. Toxicol Sci 145(1):37–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Obeso J et al (2017) Past, present, and future of Parkinson’s disease: a special essay on the 200th anniversary of the Shaking Palsy. Mov Disord 32(9):1264–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochs SD, Westfall TC, Macarthur H (2005) The separation and quantification of aminochromes using high-pressure liquid chromatography with electrochemical detection. J Neurosci Methods 142(2):201–208

    Article  CAS  PubMed  Google Scholar 

  • Ola MS et al (2015) Neuroprotective effects of rutin in streptozotocin-induced diabetic rat retina. J Mol Neurosci 56(2):440–448

    Article  CAS  PubMed  Google Scholar 

  • Paris I et al (2010) Aminochrome induces disruption of actin, alpha-, and beta-tubulin cytoskeleton networks in substantia-nigra-derived cell line. Neurotox Res 18(1):82–92

    Article  PubMed  Google Scholar 

  • Paris I et al (2011) Autophagy protects against aminochrome-induced cell death in substantia nigra-derived cell line. Toxicol Sci 121(2):376–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paris Pizarro I et al (2011) Autophagy protects against aminochrome-induced cell death in substantia nigra-derived cell line

  • Park S-E et al (2014) Rutin from Dendropanax morbifera Leveille protects human dopaminergic cells against rotenone induced cell injury through inhibiting JNK and p38 MAPK signaling. Neurochem Res 39(4):707–718

    Article  CAS  PubMed  Google Scholar 

  • Patel D et al (2019) Cinnamon and its metabolite protect the nigrostriatum in a mouse model of Parkinson’s disease via astrocytic GDNF. J Neuroimmune Pharmacol 14(3):503–518

    Article  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, ed. A. Press

  • Paxinos G, Watson C (2013) The Rat Brain in Stereotaxic Coordinates. Elsevier(7th Edition), 472

  • Phatnani H, Maniatis T (2015) Astrocytes in neurodegenerative disease. Cold Spring Harb Perspect Biol 7(6):a020628

    Article  PubMed  PubMed Central  Google Scholar 

  • Poewe W et al (2017) Parkinson’s disease. Nat Rev Dis Primers 3(1):1–21

    Article  Google Scholar 

  • Reichmann H (2017) Premotor diagnosis of Parkinson’s disease. Neurosci Bull 33(5):526–534

    Article  PubMed  PubMed Central  Google Scholar 

  • Remião F et al (2003) Synthesis and analysis of aminochromes by HPLC‐photodiode array. Adrenochrome evaluation in rat blood. Biomed Chromatogr 17(1): p. 6–13

  • Rodríguez-Chinchilla T et al (2020) [18F]-DPA-714 PET as a specific in vivo marker of early microglial activation in a rat model of progressive dopaminergic degeneration. Eur J Nucl Med Mol Imaging 47(11):2602–2612

    Article  PubMed  Google Scholar 

  • Santos CC et al (2017) Aminochrome induces microglia and astrocyte activation. Toxicol in Vitro 42:54–60

    Article  CAS  PubMed  Google Scholar 

  • Santos CC et al (2020) The flavonoid agathisflavone from Poincianella pyramidalis prevents aminochrome neurotoxicity. Neurotox Res p. 1–6

  • Santos CC et al (2022) JM-20, a denzodiazepine-dihydropyridine hybrid molecule, inhibits the formation of alpha-synuclein-aggregated species. Neurotox Res p. 1–13

  • Sarkar S, Raymick J, Imam S (2016) Neuroprotective and therapeutic strategies against Parkinson’s disease: recent perspectives. Int J Mol Sci 17(6):904

    Article  PubMed  PubMed Central  Google Scholar 

  • Schrag A et al (2015) Prediagnostic presentations of Parkinson’s disease in primary care: a case-control study. The Lancet Neurology 14(1):57–64

    Article  PubMed  Google Scholar 

  • Segura-Aguilar J (2017) On the role of endogenous neurotoxins and neuroprotection in Parkinson’s disease. Neural Regen Res 12(6):897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segura-Aguilar J et al (2022) Neuroprotection against aminochrome neurotoxicity: glutathione transferase M2–2 and DT-diaphorase. Antioxidants 11(2):296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segura-Aguilar J, Lind C (1989) On the mechanism of the Mn3+-induced neurotoxicity of dopamine: prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase. Chem Biol Interact 72(3):309–324

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar J, Muñoz P, Paris I (2016) Aminochrome as new preclinical model to find new pharmacological treatment that stop the development of Parkinson’s disease. Curr Med Chem 23(4):346–359

    Article  CAS  PubMed  Google Scholar 

  • Silva AR et al (2008) The flavonoid rutin induces astrocyte and microglia activation and regulates TNF-alpha and NO release in primary glial cell cultures. Cell Biol Toxicol 24(1):75–86

    Article  CAS  PubMed  Google Scholar 

  • Silva V, Segura-Aguilar J (2021) State and perspectives on flavonoid neuroprotection against aminochrome-induced neurotoxicity. Neural Regen Res 16(9):1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song K et al (2015) Rutin upregulates neurotrophic factors resulting in attenuation of ethanol-induced oxidative stress in HT22 hippocampal neuronal cells. J Sci Food Agric 95(10):2117–2123

    Article  CAS  PubMed  Google Scholar 

  • Tome D et al (2017) Role of neurotrophic factors in Parkinson’s disease. Curr Pharm Des 23(5):809–838

    Article  CAS  PubMed  Google Scholar 

  • Uddin MS et al (2021) Natural products for neurodegeneration: regulating neurotrophic signals. Oxid Med Cell Longev 2021

  • Whone A et al (2019) Randomized trial of intermittent intraputamenal glial cell line-derived neurotrophic factor in Parkinson’s disease. Brain 142(3):512–525

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong R, Siegel D, Ross D (2014) Quinone-induced protein handling changes: implications for major protein handling systems in quinone-mediated toxicity. Toxicol Appl Pharmacol 280(2):285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu SL et al (2013) Flavonoids induce the synthesis and secretion of neurotrophic factors in cultured rat astrocytes: a signaling response mediated by estrogen receptor. Evid-Based Complement Altern Med 2013

  • Yao S et al (2019) FTY720 inhibits MPP+-induced microglial activation by affecting NLRP3 inflammasome activation. J Neuroimmune Pharmacol 14(3):478–492

    Article  PubMed  Google Scholar 

  • Yun SP et al (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med 24(7):931–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafar KS, Siegel D, Ross D (2006) A potential role for cyclized quinones derived from dopamine, DOPA, and 3, 4-dihydroxyphenylacetic acid in proteasomal inhibition. Mol Pharmacol 70(3):1079–1086

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Postgraduate Program in Immunology at the Federal University of Bahia. We are thankful to Biorender for the design of the figures. We acknowledge the collaboration of the Master’s degree student Martinho Vaz Martinho in performing the dopamine and aminochrome HPLC analysis.

Funding

F.M.A., C.C.S., M.T.H., and J.S.A. were supported by grants from the Coordenação de Apoio de Pessoal de Nível Superior (PDSE-47/2017; CAPES/PVE– 189576/09–2014; PVB CAPES-PRINT/UFBA 2021); V.D.A.S. and S.L.C. were supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ Edital Universal/2018—429127/2018–9, 402051/2022–0, and Research Fellowship). L.C.B. thanks the Spanish Ministry of Science, Innovation and Universities (FPU 18/02549) for its support; M.T.H. thanks the Federación Española de Parkinson (FIS PI13 01293) and the Fundación Séneca (19540/PI/14) for its support; V.D.A.S. and S.L.C. thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ E. Universal/2018—429127/2018–9; and CNPQ—Research Fellowship) for its support.

Author information

Authors and Affiliations

Authors

Contributions

V.D.A.S., M.T.H., and J.S.A. made the conception and design of the study; F.M.A, A.F., L.B.J., L.C.B., K.F., C.C.S., E.N.S., J.T.S., F.S., A.C.S.C., A.A.F. P.M., and J.A.M.F. were in charge of the acquisition of data; V.D.A.S., M.T.H., J.S.A., S.L.C., M.F.D.C., and J.A.M.F. made the analysis and the interpretation of the data; V.D.A.S., M.T.H., and J.S.A. made the draft of the article or critical review for important intellectual content.

Corresponding authors

Correspondence to Maria Trinidad Herrero or Victor Diogenes Amaral Silva.

Ethics declarations

Ethical approval

All procedures were approved by the Animal Use Ethics Committee of the Federal University of Bahia (CEUA/UFBA-Protocol n° 127/2017 and 011/2017).

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 60 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Araújo, F.M., Frota, A.F., de Jesus, L.B. et al. Protective Effects of Flavonoid Rutin Against Aminochrome Neurotoxicity. Neurotox Res 41, 224–241 (2023). https://doi.org/10.1007/s12640-022-00616-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-022-00616-1

Keywords

Navigation