Skip to main content

Advertisement

Log in

Disorders of Hippocampus Facilitated by Hypertension in Purine Metabolism Deficiency is Repressed by Naringin, a Bi-flavonoid in a Rat Model via NOS/cAMP/PKA and DARPP-32, BDNF/TrkB Pathways

  • Research Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Individuals who are hypertensive have a higher tendency of predisposition to other genetic diseases including purine metabolism deficiency. Therefore, the search for nontoxic and effective chemo protective agents to abrogate hypertension-mediated genetic disease is vital. This study therefore investigated the repressive effect of naringin (NAR) against disorder of hippocampus facilitated by hypertension in purine metabolism deficiency. Male albino rats randomly assigned into nine groups (n = 7) were treated for 35 days. Group I: control animals, Group II was treated with 100 mg/kg KBrO3, Group III was treated with 250 mg/kg caffeine, and Group IV was treated with 100 mg/kg KBrO3 + 250 mg/kg caffeine. Group V was administered with 100 mg/kg KBrO3 + 100 mg/kg haloperidol. Group VI was administered with 100 mg/kg KBrO3 + 50 mg/kg NAR. Group VII was administered with 250 mg/kg caffeine + 50 mg/kg NAR, and Group VIII was administered with 100 mg/kg KBrO3 + 250 mg/kg caffeine + 50 mg/kg NAR. Finally, group IX was treated with 50 mg/kg NAR. The sub-acute exposure to KBrO3 and CAF induced hypertension and mediated impairment in the hippocampus cells. This was apparent by the increase in PDE-51, arginase, and enzymes of ATP hydrolysis (ATPase and AMPase) with a simultaneous increase in cholinergic (AChE and BuChE) and adenosinergic (ADA) enzymes. The hypertensive-mediated hippocampal impairment was associated to alteration of NO and AC signaling coupled with lower expression of brain-derived neurotrophic factor and its receptor (BDNF-TrkB), down regulation of Bcl11b and DARPP-32 which are neurodevelopmental proteins, and hypoxanthine accumulation. However, these features of CAF-mediated hippocampal damage in KBrO3-induced hypertensive rats were repressed by post-treatment with NAR via production of neuro-inflammatory mediators, attenuation of biochemical alterations, stabilizing neurotransmitter enzymes, regulating NOS/cAMP/PKA and DARPP-32, BDNF/TrkB signaling, and restoring hippocampal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

ADA:

Adenosine deaminase

AMP:

Adenosine monophosphate

ATP:

Adenosine triphosphate

BCl11b:

B cell leukemia 11B

BDNF:

Brain-derived neurotrophic factor

BuCh:

Butyrylcholine

BuChE:

Butyrylcholinesterase

CAF:

Caffeine

CaMKII:

Calcium/calmodulin-regulated protein kinases

cDNA:

Cyclic deoxyribonucleic acid

cGMP:

Cyclic guanosine monophosphate

DBP:

Diastolic blood pressure

DNA:

Deoxyribonucleic acid

DMAB:

Dimethyl amino benzaldehyde

DTNB:

5,5-Dithio-bis 2-benzoic acid

DARPP-32:

Dopamine- and cAMP-regulated phosphoprotein-32

GC:

Guanylate cyclase

GMP:

Guanosine monophosphate

HAL:

Haloperidol

HLNS:

Hepatic Lesch-Nyhan syndrome

hMDA:

Hippocampus malondialdehyde

HGPRT:

Hypoxanthine guanine phosphoribosyl transferase

IMP:

Inosine monophosphate

KBrO3 :

Potassium bromate

LNS:

Lesch-Nyhan syndrome

NAR:

Naringin

NO:

Nitric oxide

MDA:

Malondialdehyde

MAO-A:

Monoamine oxidase-A

MRNA:

Messenger ribonucleic acid

NO:

Nitric oxide

NOS:

Nitric oxide synthase

PDE-5:

Phosphodiesterase-5

PCR:

Polymerase chain reaction

PUFAs:

Poly unsaturated fatty acid

PKA:

Protein kinase A

PKG:

Protein kinase A

PNPP:

P-nitrophenyl phenyl phosphate

ROS:

Reactive oxygen species

RT:

Reverse transcriptase

RNA:

Ribonucleic acid

SEM:

Standard mean error

SBP:

Systolic blood pressure

TBA:

Thiobarbituric acid

TBARS:

Thiobarbituric reactive substance

TCA:

Trichloroacetic acid

TrkB:

Tropomyosin receptor kinase B

References

  • Agrahari AK, Priya MK, Kumar MP, Tayubi IA, Siva R, Christopher BP, Priya Doss CG, Zayed H (2019) Understanding the structure-function relationship of HPRT1 missense mutations in association with Lesch-Nyhan disease and HPRT1-related gout by in silico mutational analysis. Comput Biol Med 107:161–171

    Article  CAS  Google Scholar 

  • Akintunde JK, Akintola TE, Aliu FH, Fajoye MO, Adimchi SO (2020a) Naringin regulates erectile dysfunction by abolition of apoptosis and inflammation through NOS/cGMP/PKG signaling pathway on exposure to bisphenol-A in hypertensive rat model. Reprod Toxicol 95:123–136

    Article  CAS  Google Scholar 

  • Akintunde JK, Akintola TE, Hammed MO, Amoo CO, Adegoke AM, Ajisafe LO (2020b) Naringin protects against bisphenol-A induced oculopathy as implication of cataract in hypertensive rat model. Biomed Pharmacother 126:110043

    Article  CAS  Google Scholar 

  • Akintunde JK, Oboh G (2015) Sub-chronic exposure to leachate activates key markers linked with neurological disorder in Wistar male rat. Environ Sci Pollu Res 22:18541–18553

    Article  CAS  Google Scholar 

  • Alasmari F (2020) Caffeine induces neurobehavioral effects through modulating neurotransmitters. Saudi Pharm J 28(4):445–451

    Article  CAS  Google Scholar 

  • Anwar MA, Samaha AA, Baydoun S, Iratni R, Eid AH (2018) Rhus coriaria L. (Sumac) evokes endothelium-dependent vasorelaxation of rat aorta: involvement of the cAMP and cGMP pathways. Front Pharmacol 9:688

    Article  Google Scholar 

  • Barbacid M (1994) The Trk family of neurotrophin receptors. J Neurobiol 25:1386–1403

    Article  CAS  Google Scholar 

  • Bothwell M (1995) Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci 18:223–253

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bruna B, Lobos P, Herrera-Molina R, Hidalgo C, Paula-Lima A, Adasme T (2018) The signaling pathways underlying BDNF-induced Nrf2 hippocampal nuclear translocation involve ROS, RyR-Mediated Ca2+ signals, ERK and PI3K. Biochem Biophys Res Commun 505:201–207

    Article  CAS  Google Scholar 

  • Camici M, Garcia-Gil M, Tozzi MG (2018) The inside story of adenosine. Int J Mol Sci 19:784

    Article  Google Scholar 

  • Cavia-Saiz M, Busto MD, Pilar-Izquierdo MC, Ortega N, Perez-Mateos M, Muñiz P (2010) Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. J Sci Food Agric 90(7):1238–1244

    Article  CAS  Google Scholar 

  • Choo M, Miyazaki T, Yamazaki M, Kawamura M, Nakazawa T, Zhang J, Tanimura A, Uesaka N, Watanabe M, Sakimura K, Kano M (2017) Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum. Nat Commun 8(1):195

    Article  Google Scholar 

  • Cortés A, Gracia E, Moreno E, Mallol J, Lluís C, Canela EI, Casadó V (2015) Moonlighting adenosine deaminase: a target protein for drug development. Med Res Rev 35:85–125

    Article  Google Scholar 

  • Csiszar A, Tucsek Z, Toth P, Sosnowska D, Gautam T, Koller A, Deak F, Sonntag WE, Ungvari Z (2013) Synergistic effects of hypertension and aging on cognitive function and hippocampal expression of genes involved in beta-amyloid generation and alzheimer’s disease. Am J Physiol Heart Circ Physiol 305:H1120–H1130

    Article  CAS  Google Scholar 

  • Deenonpoe R, Prayong P, Thippamom N, Meephansan J, Na-Bangchang K (2019) Antiinflammatory effect of naringin and sericin combination on human peripheral blood mononuclear cells (hPBMCs) from patient with psoriasis. BMC Complement Altern Med 19(1):168

    Article  Google Scholar 

  • Diogo LR (2010) Caffeine, mental health, and psychiatric disorders. J Alzheimers Dis 20:S239–S248

    Article  Google Scholar 

  • Finette BA, Kendall H, Vacek PM (2002) Mutational spectral analysis at the HPRT locus in healthy children. Mutat Res 505(1–2):27–41

    Article  CAS  Google Scholar 

  • Gadad BS, Vargas-Medrano J, Ramos EI, Najera K, Fagan M, Forero A, Thompson PM (2021) Altered levels of interleukins and neurotrophic growth factors in mood disorders and suicidality: an analysis from periphery to central nervous system. Transl Psychiatry 11(1):341

    Article  CAS  Google Scholar 

  • Gardani CFF, Cappellari AR, De Souza JB, Da Silva BT, Engroff P, Moritz CEF (2019) Hydrolysis of ATP, ADP, and AMP is increased in blood plasma of prostate cancer patients. Purinergic Signal 15(1):95–105

    Article  CAS  Google Scholar 

  • Gilbert PE, Brushfield AM (2009) The role of the CA3 hippocampal sub region in spatial memory: a process oriented behavioral assessment. Prog Neuropsycho Pharmacol Biol Psychiatry 33:774–781

    Article  Google Scholar 

  • Guibinga GH, Murray F, Barron N (2013) HPRT-deficiency dysregulates cAMP-PKA signaling and phosphodiesterase 10A expression: mechanistic insight and potential target for Lesch-Nyhan Disease? PLoS ONE 8:e63333

    Article  CAS  Google Scholar 

  • Guisti G, Galanti B (1984) Colorimetric method. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinheim, Germany, pp 315–323

    Google Scholar 

  • Hainsworth AH, Markus HS (2008) Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review. J Cereb Blood Flow Metab 28:1877–1891

    Article  Google Scholar 

  • Jee HJ, Lee SG, Bormate KJ, Jung YS (2020) Effect of caffeine consumption on the risk for neurological and psychiatric disorders: sex differences in human. Nutrients 12(10):3080

    Article  CAS  Google Scholar 

  • Jinnah HA, Sabina RL, Van Den Berghe G (2013) Metabolic disorders of purine metabolism affecting the nervous system. Handbook of Clinical Neurology, Vol. 113 (3rd series) Pediatric Neurology Part III

  • Johnson FK, Peyton KJ, Liu XM, Azam MA, Shebib AR, Johnson RA, Durante W (2015) Arginase promotes endothelial dysfunction and hypertension in obese rats. Obesity (silver Spring) 23(2):383–390

    Article  CAS  Google Scholar 

  • Kettler R, Da Prada M, Burkard W (1990) Comparison of monoamine oxidase-A inhibition by moclobemide in vitro and ex vivo in rats. Acta Psychiatr Scand 82(S360):101–102

    Article  Google Scholar 

  • Kohler V, Baars MA, Spauwen P, Schievink S, Verhey FR, Van Boxtel MJ (2014) Temporal evolution of cognitive changes in incident hypertension: prospective cohort study across the adult age span. Hypertension 63:245–251

    Article  Google Scholar 

  • Kutryb-Zajac B, Jablonska P, Serocki M, Bulinska A, Mierzejewska P, Friebe D, Alter C, Jasztal A, Lango R, Rogowski J, Bartoszewski R, Slominska E, Chlopicki S, Schrader J, Yacoub MH, Smolenski R (2020) Nucleotide ecto-enzyme metabolic pattern and spatial distribution in calcific aortic valve disease; its relation to pathological changes and clinical presentation. Clin Res Cardiol 109(2):137–160

    Article  CAS  Google Scholar 

  • Layland J, Carrick D, Lee M, Oldroyd K, Berry C (2014) Adenosine: physiology, pharmacology, and clinical applications, J Am Coll. Cardiol Intv 7:581–591

    Google Scholar 

  • Lennon MJ, Jones SP, Lovelace MD, Guillemin GJ, Brew BJ (2017) Bcl11b—a critical neurodevelopmental transcription factor—roles in health and disease. Front Cell Neurosci 11(89)

  • Lessel D, Gehbauer C, Bramswig NC, Schluth-Bolard C, Venkataramanappa S, van Gassen KL, Hempel M, Haack TB, Baresic A, Genetti CA, Mariana Funari FA, Lessel I, Kuhlmann L, Simon R, Liu P, Denecke J, Kuechler A, de Kruijff I, Shoukier M, Lek M, Mullen T, Lüdecke H, Lerario AM, Kobbe R, Krieger T, Demeer B, Lebrun M, Keren B, Nava C, Buratti J, Afenjar A, Shinawi M, Sacoto MJG, Gauthier J, Hamdan FF, Laberge AM, Campeau PM, Louie RJ, Cathey SS, Prinz I, Jorge AAL, Terhal PA, Lenhard B, Wieczorek D, Strom TM, Agrawal PB, Britsch S, Tolosa E, Kubisch C (2018) BCL11B mutations in patients affected by a neurodevelopmental disorder with reduced type 2 innate lymphoid cells. Brain 2018(141):2299–2311

    Article  Google Scholar 

  • Liao GY, Kinney CE, An JJ, Xu BJ (2019) TrkB-expressing neurons in the dorsomedial hypothalamus are necessary and sufficient to suppress homeostatic feeding. Proc Natl Acad Sci USA 116:3256–3261

    Article  CAS  Google Scholar 

  • Lin YS, Weibel J, Landolt HP, Santini F, Meyer M, Brunmair J, Meier-Menches SM, Gerner C, Borgwardt S, Cajochen C, Reichert C (2021) Daily caffeine intake induces concentration-dependent medial temporal plasticity in humans: a multimodal double-blind randomized controlled trial. Cereb Cortex 31(6):3096–3106

    Article  Google Scholar 

  • Loeb S, Folkvaljon Y, Lambe M, Robinson D, Garmo H, Ingvar C, Stattin P (2012) Use of phosphodiesterase type 5 inhibitors for erectile dysfunction and risk of malignant melanoma. JAMA 313(24):2449–2455

    Article  Google Scholar 

  • Maria P, Susan AG, Abbie J, Jill C, Jillian V, Nivez R, James B, Monica H, Warren KY, Melanie N (2019) Socialization of Pain Memories: Parent-Child Reminiscing About Past Painful and Sad Events. J Pediatr Psychol 44(6):679–691

  • Marucci G, Buccion M, Dal-Ben D, Lambertucci C, Volpin R, Amenta F (2020) Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharm 190:108352

    Article  Google Scholar 

  • Mason C, Porretta E, Bishai W, Ali J, Zea AH (2015) cAMP-induced arginase and their role in Mycobacterium tuberculosis growth: Emerging of new adjunctive therapies. Front Immunol Conference Abstract: IMMUNOCOLOMBIA2015 - 11th Congress of the Latin American Association of Immunology

  • Miguel CD, Rudemiller NP, Abais JM, Mattson DL (2015) Inflammation and hypertension: new understandings and potential therapeutic targets. Curr Hypertens Rep 17(1):507

    Article  Google Scholar 

  • Miranda KM, Espay MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide: Biol and Chem 5:62–71

    Article  CAS  Google Scholar 

  • Mu L, Hu G, Liu J, Chen Y, Cui W, Qiao L (2019) Protective effects of naringenin in a rat model of sepsis-triggered acute kidney injury via activation of antioxidant enzymes and reduction in urinary angiotensinogen. Med Sci Monit 25:5986–5991

    Article  CAS  Google Scholar 

  • Nádia CR, Armando S, Ana C, Andreia B, Joaquim AR, Diana C (2021) Hippocampal CA1 theta burst-induced LTP from weaning to adulthood: Cellular and molecular mechanisms in young male rats revisited. Eur J Neurosci 54(4):5272–5292

  • Nitti M, Piras S, Brondolo L, Marinari UM, Pronzato MA, Furfaro AL (2018) Heme oxygenase 1 in the nervous system: does it favor neuronal cell survival or induce neurodegeneration? Int J Mol Sci 19(8):2260

    Article  Google Scholar 

  • Ohira K, Hayashi M (2009) A new aspect of the TrkB signaling pathway in neural plasticity. Curr Neuropharmacol 7:276–285

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Oseni OA, Olagboye SA, Idowu KA (2015) Potassium bromate induced renal toxicity in Wistar albino rats: effects of aqueous extract of nutmeg (Myristica fragrans Houtt). Br J Med Med Res 5(12):1547–1556

    Article  Google Scholar 

  • Park P, Georgiou J, Sanderson TM, Ko KH, Kang H, Kim JI, Bradley CA, Borlotto ZA, Zhuo M, Kaang BK, Colligridge GH (2021) PKA drives an increase in AMPA receptor unitary conductance during LTP in the hippocampus. Nat Commun 12: (413)

  • Park YM, Lee BH (2018) Alterations in serum BDNF and GDNF levels after 12 weeks of antidepressant treatment in female outpatients with major depressive disorder. Psychiatry Investig 15:818–823

    Article  CAS  Google Scholar 

  • Perry N, Houghton P, Theobal D, Jenner P, Perry E (2000) In vitro activity of S. lavandulaefolia (Spanish sage) relevant to treatment of Alzheimer’s disease. J Pharm Pharmacol 52(7):895–902

    Article  CAS  Google Scholar 

  • Petrie JR, Guzik TJ, Touyz RM (2018) Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol 34(5):575–584

    Article  Google Scholar 

  • Pleli T, Mondorf A, Ferreiros N, Thomas D, Dvorak K, Biondi RM, Heringdorf DM, Zeuzem S, Geisslinger G, Zimmermann H, Waidmann O, Piiper A (2018) Activation of Adenylyl Cyclase Causes Stimulation of Adenosine Receptors. Cell Physiol Biochem 45:2516–2528

  • Public Health Service (PHS) (1996) Public Health Service policy on c, DC:US Department of Health and Human Services (PL 99-158. Health Research Extension Act, 1985, Washington, DC

  • Qian Y, Forssberg H, Heijtz DR (2015) Motor skill learning is associated with phase-dependent modifications in the striatal cAMP/PKA/DARPP-32 signaling pathway in rodents. PLoS ONE 10:e0140974

    Article  Google Scholar 

  • Raker VK, Becker C, Steinbrink K (2016) The cAMP pathway as therapeutic target in autoimmune and inflammatory diseases. Front Immunol 7:123

    Article  Google Scholar 

  • Saad HB, Kharrat N, Driss D, Gargouri M, Marrakchi R, Jammoussi K, Magné C, Boudawara T, Chaabouni SE, Zeghal KM, Hakim A, Amara IB (2017) Effects of vanillin on potassium bromate-induced neurotoxicity in adult mice: impact on behavior, oxidative stress, genes expression, inflammation and fatty acid composition. Arch Physiol Biochem, ISSN: 1381–3455

  • Sajjan NB, Makandar A (2016) Evaluation of serum adenosine deaminase levels with components of metabolic syndrome. Orig Res Artic Int J Clin Biochem Res 3:285–291

    Article  Google Scholar 

  • Salehi B, Valere P, Fokou T, Sharifi-Rad M, Zucca P, Pezzani R, Martins N, Sharifi-Rad J (2019) The therapeutic potential of naringenin: a review of clinical trials. Pharma 12(1):11

    CAS  Google Scholar 

  • Schetinger MR, Morsch VM, Bonan C, Wyse AT (2007) NTPDase and 51 nucleotidase activities in physiological and disease conditions: new perspectives for human health. Bio Factors 31(2):77–98

    CAS  Google Scholar 

  • Schneider MRC, Morsch VM, Bonan CD, Wyse AT (2012) NTPDase and 5-nucleotidase activities in physiological and disease conditions: New perspectives for human health. BioFactors 31(2):77–98

    Google Scholar 

  • Sheldrick A, Camara S, Ilieva M, Riederer P, Michel TM (2017) Brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) levels in post-mortem brain tissue from patients with depression compared to healthy individuals: a proof of concept study. Eur Psychiatry 46:65–71

    Article  CAS  Google Scholar 

  • Sultan MT, Butt MS, Karim R, Ahmed W, Kaka U, Ahmad S, Dewanjee S, Jaafar HZ, Zia-Ul-Haq M (2015) Nigella sativa fixed and essential oil modulates glutathione redox enzymes in potassium bromate induced oxidative stress. BMC Complement Altern Med 15:330

    Article  Google Scholar 

  • Supriy C, Sivareddy C, Basaveswarao M, Kalyani C, Deviswetha V (2017) Evaluation of anti-bacterial activity and anti-inflammatory activity of diastase conjugated naringin. IOSR Journal of Pharm 7(8):2319–4219

    Google Scholar 

  • Tarr JM, Kaul K, Chopra M, Kohner EM, Chibber R (2013) Pathophysiology of diabetic retinopathy. ISRN Ophthalmol 343560

  • Tata CM, Sewani-Rusike CR, Oyedeji OO, Gwebu ET, Mahlakata F, Nkeh-Chungag BN (2019) Antihypertensive effects of the hydroethanol extract of Senecio serratuloides DC in rats. BMC Complement Altern Med 19:52

    Article  Google Scholar 

  • Thompson WJ, Appleman MM (1971) Characterization of cyclic nucleotide phosphodiesterases of rat tissues. J Biol Chem 246(10):3145–3150

    Article  CAS  Google Scholar 

  • Torres RJ, Prior C, Garcia MG, Puig JG (2016) A review of the implication of hypoxanthine excess in the physiopathology of Lesch-Nyhan disease. Nucleosides Nucleotides Nucleic Acids 35:507–516

    Article  CAS  Google Scholar 

  • Toth P, Tucsek Z, Sosnowska D, Gautam T, Mitschelen M, Tarantini S, Deak F, Koller A, Sonntag WE, Csiszar A, Ungvari Z (2013) Age-related auto-regulatory dysfunction and cerebro-microvascular injury in mice with angiotensin induced hypertension. J Cereb Blood Flow Metab 33:1732–1742

    Article  CAS  Google Scholar 

  • Toth P, Tucsek Z, Tarantini S, Sosnowska D, Gautam T, Mitschelen M, Koller A, Sonntag WE, Csiszar A, Ungvari Z (2014) Igf-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice. J Cereb Blood Flow Metab 34(12):1887–1897

    Article  CAS  Google Scholar 

  • Ufuk K (2007) Elevation of the flavonoid content in grapefruit by introducing chalcone isomerase gene via biotechnological methods. Turkey J Pharm Sci 4(3):375–379

    Google Scholar 

  • Van der Flier WM, Skoog I, Schneider JA, Pantoni L, Mok V, Chen LHC, Scheltens P (2018) Vascular cognitive impairment. Nat Rev Dis Primers 4:18003

    Article  Google Scholar 

  • Wang H, Farhan M, Xu J, Lazarovici P, Zheng W (2017) The involvement of DARPP-32 in the pathophysiology of schizophrenia. Oncotarget 8(32):53791–53803

    Article  Google Scholar 

  • Williams B, Mancia G, Spiering W, Rosei AE, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka FF, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I (2018) ESC/ESH Guidelines for the management of arterial hypertension, ESC Scientific Document Group. Eur Heart J 39(33):3021–3104

    Article  Google Scholar 

  • Willson C (2018) The clinical toxicology of caffeine: a review and case study. Toxicol Rep 5:1140–1152

    Article  CAS  Google Scholar 

  • Xu YC, Leung SW, Leung GP, Man RY (2015) Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance Ca2+ activated K (+) channels. Br J Pharmacol 172(12):3003–3014

    Article  CAS  Google Scholar 

  • Yurach MT, Davis BE, Cockcroft DW (2011) The effect of caffeinated coffee on airway response to methacholine and exhaled nitric oxide. Respir Med 105(11):1606–1610

    Article  Google Scholar 

  • Zhang C, Hein TW, Wang W, Chang CI, Kuo L (2001) Constitutive expression of arginase in microvascular endothelial cells counteracts nitric oxide mediated vasodilatory function. FASEB J 15:1264–1266

    Article  CAS  Google Scholar 

  • Zhang J, Yao W, Hashimoto K (2016) Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr Neuropharmacol 14(7):721–731

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Akintunde J.K: Conceptualization; methodology; investigation; supervision; software; writing, original draft; writing, review and editing. Abinu O.S: Investigation. Taiwo K.F: Investigation Sodiq R.A: Investigation Folayan A.D: Writing manuscript draft. Ate A.D: Editing.

Corresponding author

Correspondence to J. K. Akintunde.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akintunde, J.K., Abinu, O.S., Taiwo, K.F. et al. Disorders of Hippocampus Facilitated by Hypertension in Purine Metabolism Deficiency is Repressed by Naringin, a Bi-flavonoid in a Rat Model via NOS/cAMP/PKA and DARPP-32, BDNF/TrkB Pathways. Neurotox Res 40, 2148–2166 (2022). https://doi.org/10.1007/s12640-022-00578-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-022-00578-4

Keywords

Navigation