Skip to main content

Advertisement

Log in

Genistein Alleviates Oxidative Stress and Inflammation in the Hypothalamic Paraventricular Nucleus by Activating the Sirt1/Nrf2 Pathway in High Salt-Induced Hypertension

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Hypertension caused by a high-salt (HS) diet is one of the major causes of cardiovascular diseases. Underlining pathology includes oxidative stress and inflammation in the hypothalamic paraventricular nucleus (PVN). This study investigates genistein’s (Gen) role in HS-induced hypertension and the underlying molecular mechanism. We placed male Wistar rats on HS (8% NaCl) or normal salt diet (0.3% NaCl). Then, we injected bilateral PVN in rats with Gen, vehicle, or nicotinamide (NAM) for 4 weeks. Tail cuff was used weekly to assess the systolic pressure, diastolic pressure, and mean arterial pressure (MAP). Cardiac hypertrophy was analyzed by heart weight/body weight ratio and wheat germ agglutinin staining. ELISA kits, Western blot, or dihydroethidium staining determined the levels of inflammatory cytokines and oxidative stress markers. Western blot measured protein levels of Sirt1, Ac-FOXO1, Nrf2, NQO-1, HO-1, and gp91phox. Our result showed that PVN infusion of Gen significantly reduced the increase of systolic pressure, diastolic pressure, and MAP induced by an HS diet. Additionally, there was a decrease in cardiac hypertrophy and the levels of inflammatory cytokines in PVN and plasma. Meanwhile, PVN infusion of Gen notably inhibited the levels of oxidized glutathione and superoxide dismutase and improved the glutathione level and total antioxidant capacities and superoxide dismutase activities. It also decreased the level of reactive oxygen species and gp91phox expression in PVN. Furthermore, Gen infusion markedly increases the Sirt1, Nrf2, HO-1, and NQO-1 levels and decreases the Ac-FOXO1 level. However, PVN infusion of NAM could significantly block these changes induced by Gen in HS diet rats. Our results demonstrated that PVN infusion of Gen could inhibit the progression of hypertension induced by an HS diet by activating the Sirt1/Nrf2 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Tiwana, J., & Yang, E. (2017). Clinical implications of the 2017 ACC/AHA hypertension guidelines. European Heart Journal, 40(2019), 2106–2109.

    Google Scholar 

  2. Mills, K. T., Stefanescu, A., & He, J. (2020). The global epidemiology of hypertension. Nature Reviews Nephrology, 16, 223–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oparil, S., Acelajado, M. C., Bakris, G. L., Berlowitz, D. R., Cifkova, R., Dominiczak, A. F., et al. (2018). Hypertension. Nature Reviews Disease Primers, 4, 18014.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rucker, A. J., Rudemiller, N. P., & CrowleySalt, S. D. (2018). Hypertension, and immunity. Annual Review of Physiology, 80, 283–307.

    Article  CAS  PubMed  Google Scholar 

  5. Su, Q., Liu, J. J., Cui, W., Shi, X. L., Guo, J., Li, H. B., et al. (2016). Alpha lipoic acid supplementation attenuates reactive oxygen species in hypothalamic paraventricular nucleus and sympathoexcitation in high salt-induced hypertension. Toxicology Letters, 241, 152–158.

    Article  CAS  PubMed  Google Scholar 

  6. Sun, W., Wang, X., Hou, C., Yang, L., Li, H., Guo, J., et al. (2017). Oleuropein improves mitochondrial function to attenuate oxidative stress by activating the Nrf2 pathway in the hypothalamic paraventricular nucleus of spontaneously hypertensive rats. Neuropharmacology, 113, 556–566.

    Article  CAS  PubMed  Google Scholar 

  7. Yu, X.-J., Zhang, D.-M., Jia, L.-L., Qi, J., Song, X.-A., Tan, H., et al. (2015). Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress. Toxicology and Applied Pharmacology, 284, 315–322.

    Article  CAS  PubMed  Google Scholar 

  8. Song, X. A., Jia, L. L., Cui, W., Zhang, M., Chen, W., Yuan, Z. Y., et al. (2014). Inhibition of TNF-alpha in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats. Toxicology and Applied Pharmacology, 281, 101–108.

    Article  CAS  PubMed  Google Scholar 

  9. Su, Q., Qin, D. N., Wang, F. X., Ren, J., Li, H. B., Zhang, M., et al. (2014). Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin-angiotensin system and proinflammatory cytokines in hypertension. Toxicology and Applied Pharmacology, 276, 115–120.

    Article  CAS  PubMed  Google Scholar 

  10. Cheng, X. W., Narisawa, M., Jin, X., Murohara, T., & Kuzuya, M. (2018). Sirtuin 1 as a potential therapeutic target in pulmonary artery hypertension. Journal of Hypertension, 36, 1032–1035.

    Article  CAS  PubMed  Google Scholar 

  11. Nie, Q., Zhang, J., He, B., Wang, F., Sun, M., Wang, C., et al. (2020). A novel mechanism of protection against isoproterenol-induced cardiac inflammation via regulation of the SIRT1/NRF2 signaling pathway with a natural SIRT1 agonist. European Journal of Pharmacology, 886, 173398.

    Article  CAS  PubMed  Google Scholar 

  12. Sun, X., Wang, P., Yao, L. P., Wang, W., Gao, Y. M., Zhang, J., et al. (2018). Paeonol alleviated acute alcohol-induced liver injury via SIRT1/Nrf2/NF-kappaB signaling pathway. Environmental Toxicology and Pharmacology, 60, 110–117.

    Article  CAS  PubMed  Google Scholar 

  13. Yu, X. J., Xin, G. R., Liu, K. L., Liu, X. J., Fu, L. Y., Qi, J., et al. (2021). Paraventricular nucleus infusion of oligomeric proantho cyanidins improves renovascular hypertension. Frontiers in Neuroscience, 15, 642015.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ahmed, S. M., Luo, L., Namani, A., Wang, X. J., & Tang, X. (1863). Nrf2 signaling pathway: Pivotal roles in inflammation. Biochimica et Biophysica Acta, Molecular Basis of Disease, 2017, 585–597.

    Google Scholar 

  15. Saha, S., Buttari, B., Panieri, E., Profumo, E., & Saso, L. (2020). An overview of Nrf2 signaling pathway and its role in inflammation. Molecules, 25, 5474.

    Article  CAS  PubMed Central  Google Scholar 

  16. Thangavel, P., Puga-Olguin, A., Rodriguez-Landa, J. F., & Zepeda, R. C. (2019). Genistein as potential therapeutic candidate for menopausal symptoms and other related diseases. Molecules, 24, 3892.

    Article  CAS  PubMed Central  Google Scholar 

  17. Ganai, A. A., & Farooqi, H. (2015). Bioactivity of genistein: A review of in vitro and in vivo studies. Biomedicine & Pharmacotherapy, 76, 30–38.

    Article  CAS  Google Scholar 

  18. Matori, H., Umar, S., Nadadur, R. D., Sharma, S., Partow-Navid, R., Afkhami, M., et al. (2012). Genistein, a soy phytoestrogen, reverses severe pulmonary hypertension and prevents right heart failure in rats. Hypertension, 60, 425–430.

    Article  CAS  PubMed  Google Scholar 

  19. Gupta, S. K., Dongare, S., Mathur, R., Mohanty, I. R., Srivastava, S., Mathur, S., et al. (2015). Genistein ameliorates cardiac inflammation and oxidative stress in streptozotocin-induced diabetic cardiomyopathy in rats. Molecular and Cellular Biochemistry, 408, 63–72.

    Article  CAS  PubMed  Google Scholar 

  20. Devi, K. P., Shanmuganathan, B., Manayi, A., Nabavi, S. F., & Nabavi, S. M. (2017). Molecular and therapeutic targets of genistein in Alzheimer’s disease. Molecular Neurobiology, 54, 7028–7041.

    Article  CAS  PubMed  Google Scholar 

  21. Mukund, V., Mukund, D., Sharma, V., Mannarapu, M., & Alam, A. (2017). Genistein: Its role in metabolic diseases and cancer. Critical Reviews in Oncology Hematology, 119, 13–22.

    Article  PubMed  Google Scholar 

  22. Kang, Y. M., He, R. L., Yang, L. M., Qin, D. N., Guggilam, A., Elks, C., et al. (2009). Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovascular Research, 83, 737–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qi, J., Zhang, D.-M., Suo, Y.-P., Song, X.-A., Yu, X.-J., Elks, C., et al. (2012). Renin-angiotensin system modulates neurotransmitters in the paraventricular nucleus and contributes to angiotensin II-induced hypertensive response. Cardiovascular Toxicology, 13, 48–54.

    Article  Google Scholar 

  24. Wang, L. P., Yuan, D., Zheng, J., Wu, X. C., Wang, J. T., Liu, X., et al. (2019). Chikusetsu saponin IVa attenuates isoprenaline-induced myocardial fibrosis in mice through activation autophagy mediated by AMPK/mTOR/ULK1 signaling. Phytomedicine, 58, 152764.

    Article  CAS  PubMed  Google Scholar 

  25. Li, H. B., Qin, D. N., Ma, L., Miao, Y. W., Zhang, D. M., Lu, Y., et al. (2014). Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension. Toxicology and Applied Pharmacology, 279, 141–149.

    Article  CAS  PubMed  Google Scholar 

  26. Sun, H. J., Chen, D., Han, Y., Zhou, Y. B., Wang, J. J., Chen, Q., et al. (2016). Relaxin in paraventricular nucleus contributes to sympathetic overdrive and hypertension via PI3K-Akt pathway. Neuropharmacology, 103, 247–256.

    Article  CAS  PubMed  Google Scholar 

  27. Qi, J., Zhao, X. F., Yu, X. J., Yi, Q. Y., Shi, X. L., Tan, H., et al. (2016). Targeting interleukin-1 beta to suppress sympathoexcitation in hypothalamic paraventricular nucleus in Dahl salt-sensitive hypertensive rats. Cardiovascular Toxicology, 16, 298–306.

    Article  CAS  PubMed  Google Scholar 

  28. Incir, S., Bolayirli, I. M., Inan, O., Aydin, M. S., Bilgin, I. A., Sayan, I., et al. (2016). The effects of genistein supplementation on fructose induced insulin resistance, oxidative stress and inflammation. Life Sciences, 158, 57–62.

    Article  CAS  PubMed  Google Scholar 

  29. Gholampour, F., Mohammadi, Z., Karimi, Z., & Owji, S. M. (2020). Protective effect of genistein in a rat model of ischemic acute kidney injury. Gene, 753, 144789.

    Article  CAS  PubMed  Google Scholar 

  30. Hodgson, J. M., Puddey, I. P., Beilin, L. J., Mori, T. A., Burke, V., Croft, K. D., & Rogers, P. B. (1999). Effects of isoflavonoids on blood pressure in subjects with high-normal ambulatory blood pressure levels: A randomized controlled trial. American Journal of Hypertension, 12, 47–53.

    Article  CAS  PubMed  Google Scholar 

  31. Irace, C., Marini, H., Bitto, A., Altavilla, D., Polito, F., Adamo, E. B., et al. (2013). Genistein and endothelial function in postmenopausal women with metabolic syndrome. European Journal of Clinical Investigation, 43, 1025–1031.

    Article  CAS  PubMed  Google Scholar 

  32. Xu, J., Jackson, C. W., Khoury, N., Escobar, I., & Perez-Pinzon, M. A. (2018). Brain SIRT1 mediates metabolic homeostasis and neuroprotection. Frontiers in Endocrinology (Lausanne), 9, 702.

    Article  Google Scholar 

  33. Schmidlin, C. J., Dodson, M. B., Madhavan, L., & Zhang, D. D. (2019). Redox regulation by NRF2 in aging and disease. Free Radical Biology & Medicine, 134, 702–707.

    Article  CAS  Google Scholar 

  34. Li, L., Luo, W., Qian, Y., Zhu, W., Qian, J., Li, J., et al. (2019). Luteolin protects against diabetic cardiomyopathy by inhibiting NF-kappaB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine, 59, 152774.

    Article  CAS  PubMed  Google Scholar 

  35. Ruiz, S., Pergola, P. E., Zager, R. A., & Vaziri, N. D. (2013). Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney International, 83, 1029–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants Shaanxi Key Research and Development Program (No.2021SF-203), the National Natural Science Foundation of China (No.81800373), and the Natural Science Research Program of Shaanxi Province (Nos. 2020JM-079, 2020GCZX-13 and 2019JQ-263).

Author information

Authors and Affiliations

Authors

Contributions

LGN, NS, and YMK designed the study. LGN, NS, KLL, QS, and JQ performed all experiments and drafted the manuscript. YLF and QS also performed the data analysis and drafted the manuscript. GRX participated in data analysis. NS, KLL, and JQ critically revised the manuscript. LGN and YMK edited the revised manuscript language. All authors reviewed the final manuscript.

Corresponding author

Correspondence to Yu-Ming Kang.

Ethics declarations

Competing Interests

The authors declare that there are no conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Handling Editor: Y. James Kang

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, LG., Sun, N., Liu, KL. et al. Genistein Alleviates Oxidative Stress and Inflammation in the Hypothalamic Paraventricular Nucleus by Activating the Sirt1/Nrf2 Pathway in High Salt-Induced Hypertension. Cardiovasc Toxicol 22, 898–909 (2022). https://doi.org/10.1007/s12012-022-09765-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-022-09765-3

Keywords

Navigation