Skip to main content

Advertisement

Log in

Inflammation and Hypertension: New Understandings and Potential Therapeutic Targets

  • Antihypertensive Agents: Mechanisms of Drug Action (M Ernst, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Research studying the role of inflammation in hypertension and cardiovascular disease has flourished in recent years; however, the exact mechanisms by which the activated immune cells lead to the development and maintenance of hypertension remain to be elucidated. The objectives of this brief review are to summarize and discuss the most recent findings in the field, with special emphasis on potential therapeutics to treat or prevent hypertension. This review will cover novel immune cell subtypes recently associated to the disease including the novel role of cytokines, toll-like receptors, and inflammasomes in hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Schiffrin EL. Immune mechanisms in hypertension and vascular injury. Clin Sci. 2014;126:267–74.

    CAS  PubMed  Google Scholar 

  2. Bernardo R-IB. Renal infiltration of immunocompetent cells: cause and effect of sodium-sensitive hypertension. Clin Exp Nephrol. 2010;14:105–11.

    Google Scholar 

  3. Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, et al. Inflammation, immunity, and hypertension. Hypertension. 2011;57:132–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Mattson DL. Infiltrating immune cells in the kidney in salt-sensitive hypertension and renal injury. Am J Physiol. 2014; (in press).

  5. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4:330–6.

    CAS  PubMed  Google Scholar 

  6. Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol. 2010;11:7–13.

    CAS  PubMed  Google Scholar 

  7. Gol-Ara M, Jadidi-Niaragh F, Sadria R, Azizi G, Mirshafiey A. The role of different subsets of regulatory T cells in immunopathogenesis of rheumatoid arthritis. Arthritis. 2012;2012:805875.

    PubMed Central  PubMed  Google Scholar 

  8. Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T. Regulatory T cells: how do they suppress immune responses? Int Immunol. 2009;21:1105–11.

    CAS  PubMed  Google Scholar 

  9. Ivanov I, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgamma t directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.

    CAS  PubMed  Google Scholar 

  10. Louten J, Boniface K, de Waal Malefyt R. Development and function of TH17 cells in health and disease. J Allergy Clin Immunol. 2009;123:1004–11.

    CAS  PubMed  Google Scholar 

  11. Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ, et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 2010;55:500–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Wu J, Thabet SR, Kirabo A, Trott DW, Saleh MA, Xiao L, et al. Inflammation and mechanical stretch promote aortic stiffening in hypertension through activation of p38 mitogen-activated protein kinase. Circ Res. 2008;114:616–25.

    Google Scholar 

  13. Nguyen H, Chiasson VL, Chatterjee P, Kopriva SE, Young KJ, Mitchell BM. Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension. Cardiovasc Res. 2013;97:696–704. This study demonstrates that IL-17 leads to the deleterious effects on the vasculature by promoting NOS3 phosphorylation and therefore decreasing enzyme activity.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Amador CA, Barrientos V, Peña J, Herrada AA, González M, Valdés S, et al. Spironolactone decreases DOCA-salt-induced organ damage by blocking the activation of T helper 17 and the downregulation of regulatory T lymphocytes. Hypertension. 2014;63:797–803.

    CAS  PubMed  Google Scholar 

  15. Cornelius DC, Hogg JP, Scott J, Wallace K, Herse F, Moseley J, et al. Administration of interleukin-17 soluble receptor C suppresses TH17 cells, oxidative stress, and hypertension in response to placental ischemia during pregnancy. Hypertension. 2013;62:1068–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Barhoumi T, Kasal DA, Li MW, Shbat L, Laurant P, Neves MF, et al. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension. 2011;57:469–76.

    CAS  PubMed  Google Scholar 

  17. Matrougui K, Zakaria AE, Kassan M, Choi S, Nair D, Gonzalez-Villalobos RA, et al. Natural regulatory T cells control coronary arteriolar endothelial dysfunction in hypertensive mice. Am J Pathol. 2011;178:434–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Kassan M, Galan M, Partyka M, Trebak M, Matrougui K. Interleukin-10 released by CD4(+)CD25(+) natural regulatory T cells improves microvascular endothelial function through inhibition of NADPH oxidase activity in hypertensive mice. Arterioscler Thromb Vasc Biol. 2011;31:2534–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Sandberg K, Ji H. Sex differences in primary hypertension. Biol Sex Differ. 2012;3:7.

    PubMed Central  PubMed  Google Scholar 

  20. Cutolo M, Sulli A, Capellino S, Villaggio B, Montagna P, Seriolo B, et al. Sex hormones influence on the immune system: basic and clinical aspects in autoimmunity. Lupus. 2004;13:635–8.

    CAS  PubMed  Google Scholar 

  21. Tipton AJ, Baban B, Sullivan JC. Female spontaneously hypertensive rats have greater renal anti-inflammatory T lymphocyte infiltration than males. Am J Physiol Regul Integr Comp Physiol. 2012;303:R359–67.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Tipton AJ, Baban B, Sullivan JC. Female spontaneously hypertensive rats have a compensatory increase in renal regulatory T cells in response to elevations in blood pressure. Hypertension. 2014;64:557–64. With increasing emphasis on the use of female disease models, this group explores some of the inflammatory characteristics that may explain disparities in the presentation of hypertension between males and females.

    CAS  PubMed  Google Scholar 

  23. Kanellakis P, Dinh TN, Agrotis A, Bobik A. CD4(+)CD25(+)Foxp3(+) regulatory T cells suppress cardiac fibrosis in the hypertensive heart. J Hypertens. 2011;29:1820–8.

    CAS  PubMed  Google Scholar 

  24. Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013;496:518–22. In vitro elevation of NaCl concentration can affect T cell differentiation. These findings could have major implications regarding the emerging hypothesis of sodium storage in the skin.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Satpathy AT, Wu X, Albring JC, Murphy KM. Re(de)fining the dendritic cell lineage. Nat Immunol. 2012;13:1145–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Christ A, Temmerman L, Legein B, Daemen MJAP, Biessen EAL. Dendritic cells in cardiovascular diseases: epiphenomenon, contributor or therapeutic opportunity. Circulation. 2013;128:2603–13.

    PubMed  Google Scholar 

  27. Bobryshev YV, Lord RS. Ultrastructural recognition of cells with dendritic cell morphology in human aortic intima. Contacting interactions of vascular dendritic cells in athero-resistant and athero-prone areas of the normal aorta. Arch Histol Cytol. 1995;58:307–22.

    CAS  PubMed  Google Scholar 

  28. Soos TJ, Sims TN, Barisoni L, Lin K, Littman DR, Dustin ML, et al. CX3CR1+ interstitial dendritic cells form a contiguous network throughout the entire kidney. Kidney Int. 2006;70:591–6.

    CAS  PubMed  Google Scholar 

  29. D’Agostino PM, Gottfried-Blackmore A, Anandasabapathy N, Bulloch K. Brain dendritic cells: biology and pathology. Acta Neuropathol. 2012;124:599–614.

    PubMed Central  PubMed  Google Scholar 

  30. Van Vré EA, Van Brussel I, de Beeck KO, Hoymans VY, Vrints CJ, Bult H, et al. Changes in blood dendritic cell counts in relation to type of coronary artery disease and branchial endothelial cell function. Coron Artery Dis. 2010;21:87–96.

    PubMed  Google Scholar 

  31. Kretzschmar D, Betge S, Windisch A, Pistulli R, Rohm I, Fritzenwanger M, et al. Recruitment of circulating dendritic cell precursors into the infarcted myocardium and pro-inflammatory response in acute myocardial infarction. Clin Sci. 2012;123:387–98.

    CAS  PubMed  Google Scholar 

  32. Paul K, Kretzschmar D, Yilmaz A, Bärthlein B, Titze S, Wolf G, et al. Circulating dendritic cell precursors in chronic kidney disease: a cross-sectional study. BMC Nephrol. 2013;14:274.

    PubMed Central  PubMed  Google Scholar 

  33. Kirabo A, Fontana V, Davies S, Roberts LJ, de Faria A, Galindo C, et al. Dendritic cell superoxide and isoketals activate T cells and promote angiotensin II hypertension. FASEB J. 2014;28:s1153.2. This study shows that AngII-induced hypertension is associated to isoketal formation and that isoketals scavengers can effectively decreased immunogenicity of DCs and attenuate hypertension.

    Google Scholar 

  34. Nahmod K, Gentillini C, Vermeulen M, Uharek L, Wang Y, Zhang J, et al. Impaired function of dendritic cells deficient in angiotensin II type 1 receptors. J Pharmacol Exp Ther. 2010;334:854–62.

    CAS  PubMed  Google Scholar 

  35. Herrada AA, Contreras FJ, Marini NP, Amador CA, González PA, Cortés CM, et al. Aldosterone promotes autoimmune damage by enhancing Th17-mediated immunity. J Immunol. 2010;184:191–202.

    CAS  PubMed  Google Scholar 

  36. Vinh A, Chen W, Blinder Y, Weiss D, Taylor WR, Goronzy JJ, et al. Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension. Circulation. 2010;122:2529–37.

    PubMed Central  PubMed  Google Scholar 

  37. Strioga M, Pasukoniene V, Characiejus D. CD8+ CD28 and CD8+ CD57+ T cells and their role in health and disease. Immunology. 2011;134:17–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Youn J-C, Yu HT, Lim BJ, Koh MJ, Lee J, Chang D-Y, et al. Immunosensescent CD8+ T cells and C-X-C chemokine receptor type 3 chemokines are increased in human hypertension. Hypertension. 2013;62:126–33. This is the first study that directly demonstrates the involvement of T cells, specifically immunosenescent CD8+ cells, in human hypertension.

    CAS  PubMed  Google Scholar 

  39. Ramseyer VD, Garvin JL. Tumor necrosis factor α: regulation of renal function and blood pressure. Am J Physiol Renal Physiol. 2013;304:F1231.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Saulnier P-J, Gand E, Ducrocq G, Halimi J-M, Hulin-Delmotte C, Llaty P, et al. Association of serum concentration of TNFR1 with all-cause mortality in patients with type 2 diabetes and chronic kidney disease: follow-up of the SURDIAGENE cohort. Diabetes Care. 2014;37:1425–31.

    CAS  PubMed  Google Scholar 

  41. Chen CCA, Pedraza PL, Hao S, Stier CT, Ferreri NR. TNFR1-deficient mice display altered blood pressure and renal responses to AngII infusion. Am J Physiol Ren Physiol. 2010;299:F1141–50.

    CAS  Google Scholar 

  42. Lucas R, Juillard P, Decoster E, Redard M, Burger D, Donati Y, et al. Crucial role of tumor necrosis factor (TNF) receptor 2 and membrane-bound TNF in experimental cerebral malaria. Eur J Immunol. 1997;27:1719–25.

    CAS  PubMed  Google Scholar 

  43. Min W, Wan T, Luo Y. Dissecting TNF-TNFR1/TNFR2 signaling pathways in vasculature. In: Dauphinee S, Karsan A, editors. Endothelial Dysfunction and Inflammation. 2010. pp:137–159.

  44. Onishi RM, Gaffen SL. Interleukin-17 and its targets genes: mechanisms of interleukin-17 function in disease. Immunology. 2010;129:311–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Wong CK, Lit LC, Tam LS, Li EK, Wong PT, Lam CW. Hyperproduction of IL-23 and Il-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity. Clin Immunol. 2008;127:385–93.

    CAS  PubMed  Google Scholar 

  46. Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, et al. Induction of pathogenic Th17 cells by inducible salt-sensing SGK1. Nature. 2013;496:513–7. This paper demonstrates the importance of SGK1 expression for the polarization of naïve T cells into the Th17 phenotype, in presence of high salt.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Funakoshi Y, Ichiki T, Shimokawa H, Egashira K, Takeda K, Kaibuchi K, et al. Rho-kinase mediates angiotensin II-induced monocyte chemoattractant protein-1 expression in rat vascular smooth muscle cells. Hypertension. 2001;38:100–4.

    CAS  PubMed  Google Scholar 

  48. Ishizawa K, Yoshizumi M, Tsuchiya K, Houchi H, Minakuchi K, Izawa Y, et al. Dual effects of endothelin-1 (1-31): induction of mesangial cell migration and facilitation of monocyte recruitment through monocyte chemoattractant protein-1 production by mesangial cells. Hypertens Res. 2004;27:433–40.

    CAS  PubMed  Google Scholar 

  49. Fliser D, Buchholz K, Haller H, for the EUTOPIA investigators. Antiinflammatory effects of angiotensin subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation. 2004;110:1103–7.

    CAS  PubMed  Google Scholar 

  50. Shen JZ, Morgan J, Tesch GH, Young MJ. CCL2-dependent macrophage recruitment is critical for mineralocorticoid receptor-mediated cardiac fibrosis, inflammation, and blood pressure responses in male mice. Endocrinology. 2014;155:1057–66.

    CAS  PubMed  Google Scholar 

  51. Chan CT, Moore JP, Budzyn K, Guida E, Diep H, Vinh A, et al. Reversal of vascular macrophage accumulation and hypertension by a CCR2 antagonist in DOCA salt-treated mice. Hypertension. 2012;60:1207–12.

    CAS  PubMed  Google Scholar 

  52. Brands MW, Banes-Berceli AKL, Inscho EW, Al-Azawi H, Allen AJ, Labazi H. Interleukin-6 knockout prevents angiotensin II hypertension: role of renal vasoconstriction and JAK2/STAT3 activation. Hypertension. 2010;56:879–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Chamarthi B, Williams GH, Ricchiuti V, Srikumar N, Hopkins PN, Luther JM, et al. Inflammation and hypertension: the interplay of interleukin-6, dietary sodium and the renin-angiotensin system in humans. Am J Hypertens. 2011;24:1143–8. This study confirms the involvement of IL-6 in the AngII pathway in human hypertensives.

    CAS  PubMed  Google Scholar 

  54. Furuya Y, Satoh T, Kuwana M. Interleukin-6 as a potential therapeutic target for pulmonary arterial hypertension. Int J Rheum. 2010; 2010 Article ID 720305.

  55. Santilli F, Basili S, Ferrori P, Davi G. CD40/CD40L system and vascular disease. Intern Emerg Med. 2007;2:256–68.

    CAS  PubMed  Google Scholar 

  56. Ruef J, Browatzki M, Pfeiffer CA, Schmidt J, Kranzhofer R. Angiotensin II promotes the inflammatory response to CD40 ligation via TRAF-2. Vasc Med. 2007;12:23–7.

    PubMed  Google Scholar 

  57. Hausding M, Jurk K, Daub S, Kröller-Schön S, Stein J, Schwenk M, et al. CD40L contributes to angiotensin II-induced pro-thrombotic state, vascular inflammation, oxidative stress and endothelial dysfunction. Basic Res Cardiol. 2013;108:386. This paper demonstrates that genetic deletion of CD40L improves endothelial dysfunction and decreases aortic inflammation and oxidative stress.

    PubMed  Google Scholar 

  58. Derosa G, D’Angelo A, Mudellini A, Pesce RM, Fogari E, Maffioli P. Evaluation of emerging biomarkers in cardiovascular risk stratification of hypertensive patients: a 2-year study. Curr Med Res Opin. 2012;28:1435–45.

    CAS  PubMed  Google Scholar 

  59. Surgit O, Erturk M, Akgul O, Pusuroglu H, Korkmaz AF, Isiksacan N, et al. Assessment of mean platelet volume and soluble CD40 ligand levels in patients with non-dipper hypertension, dippers and normotensives. Clin Exp Hypertens. 2014;27:1–5.

    Google Scholar 

  60. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20.

    CAS  PubMed  Google Scholar 

  61. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81:1–5.

    CAS  PubMed  Google Scholar 

  62. McCarthy CG, Goulopoulou S, Wenceslau CF, Spitler K, Matsumoto T, Webb RC. Toll-like receptors and damage-associated molecular patterns: novel links between inflammation and hypertension. Am J Physiol Heart Circ Physiol. 2014;306:H184–96. Nice review paper on the role of toll-like receptors in hypertension.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity. 2013;38:209–23.

    CAS  PubMed  Google Scholar 

  64. Falck-Hansen M, Kassiteridi C, Monaco C. Toll-like receptors in atherosclerosis. Int J Mol Sci. 2013;14:14008–23.

    PubMed Central  PubMed  Google Scholar 

  65. Lin M, Tang SCW. Toll-like receptors: sensing and reacting to diabetic injury in the kidney. Nephrol Dial Transplant. 2014;29:746–54.

    CAS  PubMed  Google Scholar 

  66. Bauer EM, Shapiro R, Zheng Z, Ahmad F, Ishizawar D, Comhair SA, et al. High mobility group box 1 contributes to the pathogenesis of experimental pulmonary hypertension via activation of toll-like receptor 4. Mol Med. 2012;18:1509–18.

    PubMed Central  CAS  Google Scholar 

  67. Facholi Bomfim G, Szasz T, Carvalho MH, Webb RC. The Toll way to hypertension: role of the innate immune response. Endocrinol Metabol Syndr. 2011;S8:002.

    Google Scholar 

  68. Iversen A-C. Inflammatory mechanisms in preeclampsia. Pregnancy Hyper. 2013;32:58.

    Google Scholar 

  69. Mann DL. The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ Res. 2011;108:1133–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Kawai T, Akira S. The role of pattern recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol. 2010;11:373–84.

    CAS  PubMed  Google Scholar 

  71. Mallard C. Innate immune regulation by toll-like receptors in the brain. ISRN Neurol. 2012; 2012 Article ID 701950.

  72. Jin B, Sun T, Yu XH, Yeo AE. The effects of TLR activation on T-cell development and differentiation. Clin Dev Immunol. 2012;2012:836485.

    PubMed Central  PubMed  Google Scholar 

  73. Xie F, von Dadelszen P, Nadeau J. CMV infection, TLR-2 and -4 expression, and cytokine profiles in early-onset preeclampsia with HELLP syndrome. Am J Reprod Immunol. 2014;71:379–86.

    CAS  PubMed  Google Scholar 

  74. Chatterjee P, Weaver LE, Doersch KM, Kopriva SE, Chiasson VL, Allen SJ, et al. Placental Toll-like receptor 3 and Toll-like receptor 7/8 activation contributes to preeclampsia in humans and mice. PLoS One. 2012;7:e41884.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Goulopoulou S, Matsumoto T, Bomfim GF, Webb RC. Toll-like receptor 9 activation: a novel mechanism linking placenta-derived mitochondrial DNA and vascular dysfunction in preeclampsia. Clin Sci. 2012;123:429–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Thompson JA, Webb RC. The potential role of Toll-like receptors in programming of vascular dysfunction. Clin Sci. 2013;125:19–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Hardigan T, Sepulveda MA, Pedrosa NK, Webb RC. Toll-like receptor 2 blockade decreases contractility in angiotensin II-induced hypertensive rat resistance arteries. Hypertension. 2013;62:A189.

    Google Scholar 

  78. Plavia V, Pyle C, Mezzetti E, Chen X, Didion S. Toll-like receptor 4 contributes to hypertension and endothelial dysfunction produced by angiotensin II. FASEB J. 2012;26:879.5.

    Google Scholar 

  79. Liang C-F, Liu JTC, Wang Y, Xu A, Vanhoutte PM. Toll-like receptor 4 mutation protects obese mice against endothelial dysfunction by decreasing NADPH oxidase isoforms 1 and 4. Arterioscler Thromb Vasc Biol. 2013;33:777–84.

    CAS  PubMed  Google Scholar 

  80. Sollinger D, Eiβler R, Lorenz S, Strand S, Chmielewski S, Aoqui C, et al. Damage-associated molecular pattern activated toll-like receptor 4 signalling modulates blood pressure in L-NAME-induced hypertension. Cardiovasc Res. 2014;101:464–72.

    CAS  PubMed  Google Scholar 

  81. Speer T, Rohner L, Blyszczuk P, Shroff R, Kuschnerus K, Kränkel N, et al. Abnormal high-density lipoprotein induces endothelial dysfunction via activation of toll-like receptor 2. Immunity. 2013;38:754–68.

    CAS  PubMed  Google Scholar 

  82. Wu H, Chen G, Wyburn KR. TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest. 2007;117:2847–59.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Guiducci C, Gong M, Xu Z, Gill M, Chaussabel D, Meeker T, et al. TLR recognition of self-nucleic acids hampers glucocorticoid activity in lupus. Nature. 2010;465:937–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Spirig R, Tsui J, Shaw S. The emerging role of TLR and innate immunity in cardiovascular disease. Cardiol Res Pract. 2012; 2012, Article ID 181394.

  85. Arslan F, Keogh B, McGuirk P, Parker AE. TLR2 and TLR4 in ischemia reperfusion injury. Mediat Inflamm. 2010;2010:704202.

    CAS  Google Scholar 

  86. Arslan F, Houtgraaf JH, Keogh B, Kazemi K, de Jong R, McCormack WJ, et al. Treatment with OPN-305, a humanized anti-Toll-Like receptor-2 antibody, reduces myocardial ischemia/reperfusion injury in pigs. Circ Cardiovasc Interv. 2012;5:279–87.

    CAS  PubMed  Google Scholar 

  87. Wang X, Lv X, Wang J, Yan H, Wang Z, Liu H, et al. Blocking TLR2 activity diminishes and stabilizes advanced atherosclerotic lesions in apolipoprotein E-deficient mice. Acta Pharmacol Sin. 2013;34:1025–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Lu Z, Zhang X, Li Y, Jin J, Huang Y. TLR4 antagonist reduces early-stage atherosclerosis in diabetic apolipoprotein E-deficient mice. J Endocrinol. 2013;216:61–71.

    CAS  PubMed  Google Scholar 

  89. Lin M, Yiu WH, Li RX, Wu HJ, Wong DWL, Chan LYY, et al. The TLR4 antagonist CRX-526 protects against advanced diabetic nephropathy. Kidney Int. 2013;83:887–900.

    CAS  PubMed  Google Scholar 

  90. Nunes KP, Bonfim GF, Szasz T, Carvalho MH, Webb RC. Treatment with anti-TLR4 antibody lowers blood pressure and improves erectile function in DOCA-salt rats. Hypertension. 2012;60:A254.

    Google Scholar 

  91. Bomfim GF, Dos Santos RA, Oliveira MA, Giachini FR, Akamine EH, Tostes RC, et al. Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin Sci. 2012;122:535–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Boyden ED, Dietrich WF. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet. 2006;38:240–4.

    CAS  PubMed  Google Scholar 

  93. Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B, et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell. 2007;25:713–24.

    CAS  PubMed  Google Scholar 

  94. Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A. 2010;107:3076–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011;477:596–600.

    CAS  PubMed  Google Scholar 

  96. Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science. 2009;323:1057–60.

    CAS  PubMed  Google Scholar 

  97. Martinon F, Tschopp J. NLRs join TLRs as innate sensors of pathogens. Trends Immunol. 2005;26:447–54.

    CAS  PubMed  Google Scholar 

  98. Sutterwala FS, Ogura Y, Flavell RA. The inflammasome in pathogen recognition and inflammation. J Leukoc Biol. 2007;82:259–64.

    CAS  PubMed  Google Scholar 

  99. Vilaysane A, Chun J, Seamone ME, Wang W, Chin R, Hirota S, et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J Am Soc Nephrol. 2010;21:1732–44. Aside from demonstrating that NLRP3-deficient mice were protected from chronic kidney disease associated from unilateral ureteral obstruction, this study also examined a panel of human non-diabetic kidney diseases and found that NLRP3 mRNA increased with disease prevalence and correlated with impaired renal function.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Andersen K, Eltrich N, Lichtnekert J, Anders HJ, Vielhauer V. The NLRP3/ASC inflammasome promotes T-cell-dependent immune complex glomerulonephritis by canonical and noncanonical mechanisms. Kidney Int. 2014. This study importantly demonstrated that NLRP3 inflammasome inhibition prevents T cell activation and infiltration into the kidney.

  101. Yang SM, Ka SM, Hua KF, Wu TH, Chuang YP, Lin YW, et al. Antroquinonol mitigates an accelerated and progressive IgA nephropathy model in mice by activating the Nrf2 pathway and inhibiting T cells and NLRP3 inflammasome. Free Radic Biol Med. 2013;61:285–97.

    CAS  PubMed  Google Scholar 

  102. Zhang C, Boini KM, Xia M, Abais JM, Li X, Liu Q, et al. Activation of Nod-like receptor protein 3 inflammasomes turns on podocyte injury and glomerular sclerosis in hyperhomocysteinemia. Hypertension. 2012;60:154–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Kim HJ, Lee DW, Ravichandran K, O Keys D, Akcay A, Nguyen Q, et al. NLRP3 inflammasome knockout mice are protected against ischemic but not cisplatin-induced acute kidney injury. J Pharmacol Exp Ther. 2013;346:465–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Wang Q, So A, Nussberger J, Tschopp J, Burnier M. Impact of NLRP3 inflammasome on the development of hypertension and renal and cardiac hypertrophy in 2K1C and DOCA/salt mice. Kidney Res Clin Pract. 2012;31(2):A83.

    Google Scholar 

  105. Xia M, Xiong J, Boini KM, Abais JM, Li PL. Characteristics and hypertensive actions of renal medullary NALP3 inflammasomes in mice. FASEB J. 2012;26:879.884.

    Google Scholar 

  106. Omi T, Kumada M, Kamesaki T, Okuda H, Munkhtulga L, Yanagisawa Y, et al. An intronic variable number of tandem repeat polymorphisms of the cold-induced autoinflammatory syndrome 1 (CIAS1) gene modifies gene expression and is associated with essential hypertension. Eur J Hum Genet. 2006;14:1295–305. This was the first genetic study to associate the CIAS1 (NLRP3) gene to essential hypertension susceptibility.

    CAS  PubMed  Google Scholar 

  107. Ruiz-Opazo N, Lopez LV, Herrera VL. The dual AngII/AVP receptor gene N119S/C163R variant exhibits sodium-induced dysfunction and cosegregates with salt-sensitive hypertension in the Dahl salt-sensitive hypertensive rat model. Mol Med. 2002;8:24–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Shaik R, Kolliputi N, Waxman AB. Activation of inflammasome in pulmonary arterial hypertension. Pulmonary hypertension: biomarkers, genetics, and genomics: insights into pathogenesis, A4865, 2010.

  109. Villegas LR, Kluck D, Field C, Oberley-Deegan RE, Woods C, Yeager ME, et al. Superoxide dismutase mimetic, MnTE-2-PyP, attenuates chronic hypoxia-induced pulmonary hypertension, pulmonary vascular remodeling, and activation of the NALP3 inflammasome. Antioxid Redox Signal. 2013;18:1753–64.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This manuscript was partially funded by grants DK96859 and HL116264 to DLM and NIH T32 DK007545 to CDM.

Compliance with Ethics Guidelines

Conflict of Interest

Nathan P. Rudemiller declares that he has no conflict of interest.

Justine M. Abais, Carmen De Miguel and David L. Mattson report grants from the National Institutes of Health.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Mattson.

Additional information

This article is part of the Topical Collection on Antihypertensive Agents: Mechanisms of Drug Action

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Miguel, C., Rudemiller, N.P., Abais, J.M. et al. Inflammation and Hypertension: New Understandings and Potential Therapeutic Targets. Curr Hypertens Rep 17, 507 (2015). https://doi.org/10.1007/s11906-014-0507-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-014-0507-z

Keywords

Navigation