Skip to main content
Log in

Activation of SIRT-1 Signalling in the Prevention of Bipolar Disorder and Related Neurocomplications: Target Activators and Influences on Neurological Dysfunctions

  • Review Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

SIRT-1 (silent mating-type information regulation 2 homolog-1) is a protein found in neuronal nuclei, microglia, and astrocyte cells of the brain. It is sometimes referred to as NAD + -dependent deacetylase (nicotinamide adenine dinucleotide). The activation of sirtuins (SIRT-1–7) has been shown to protect against a wide range of disorders, including neurodegenerative and neuropsychiatric disorders. SIRT-1 has gained considerable interest from these families because of its early link to long-life expansion and calorie restriction involvement. SIRT-1 is necessary for gene silencing, cell cycle regulation, fat and glucose metabolism, oxidative stress, ageing, and memory formation. In this review, we investigate the role of SIRT-1 downregulation in the progression of bipolar disorder (BD) and neurological abnormalities, as well as related neurological alterations such as genetic dysfunction, neurotransmitter imbalance, oxidative stress-induced apoptosis, and mitochondrial dysfunction. BD is a psychiatric disease distinguished by extreme mood fluctuations that range from depressive lows to manic highs. BD is a complicated disorder with numerous clinical signs and neurocomplications that produce significant behavioural problems. SIRT-1 deficiency in the brain has been demonstrated to affect the activity of its transcription factors and molecular changes, including genetic defects. SIRT-1 is now being studied as a potential therapeutic target for a range of brain disorders. A recent study also found that activating SIRT-1 signalling performs a protective effect in avoiding depression and mania-like behaviours. Furthermore, this review investigates the potential mechanisms by which SIRT-1 regulates neuronal transmission and neurogenesis. As a result of our review, we revealed that SIRT-1 activators have neuroprotective potential in BD and related neurological dysfunctions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Abbreviations

SIRT-1 :

Silent mating-type information regulation 2 homolog-1

NAD  +  :

Nicotinamide adenine dinucleotide

BD :

Bipolar disorder

Th17-cells :

T helper 17 cells

IL-1β :

Interleukin-1β

MDD :

Major depressive disorder

AD :

Alzheimer disease

PD :

Parkinson’s disease

MS :

Multiple sclerosis

NADH :

Nicotinamide adenine dinucleotide hydrogen

p53 :

Tumour proteins p53

FOXO1/3 :

Fork head box protein O1/3

PGC-1α :

Peroxisome proliferator-activated gamma co-activator-1 alpha

NF-kB :

Nuclear factor kappa light chain enhancer of activated B-cells

DG :

Dentate gyrus

CA3 :

Cornuammonis 3

WBC :

White blood cells

Na  +  K  +  -ATPase :

Sodium and potassium-activated adenosine triphosphatase

miR-138 :

MicroRNA-138

PPD :

Postpartum depression

NiO :

Nickel oxide

PFC :

Prefrontal cortex

CNS :

Central nervous system

AKT :

A serine/threonine-protein kinase

GSK-3 :

Glycogen synthase kinase-3

RNA :

Ribonucleic acid

NHLH-2 :

Nescient helix loop helix-2

MAO-A :

Monoamine oxidase-A

HT :

Serotonin

5-HIAA :

5-Hydroxy indole acetic acid

MPTP :

1-Methyl-4-phenyl-1, 2, 3 and 6-tetrahydropyridine

ALS :

Amyotrophic lateral sclerosis

NAc :

Nucleus accumbens

AMPK :

AMP-activated protein kinase

PKC :

Protein kinase C

IP3 :

Inositol 1,4,5 triphosphate

TNF-α :

Tumour necrosis factor-alpha

AP-1 :

Activator protein-1

ROS :

Reactive oxygen species

RNS :

Reactive nitrogen species

BSKO :

Brain-specific SIRT-1 knockout

GPCR :

G protein-coupled receptor

mRNA :

Messenger RNA

eQTL :

Expression quantitative trait loci

BDNF :

Brain-derived neurotrophic factor

CUMS :

Chronic unpredictable mild stress

ATP :

Adenosine triphosphate

HIFs :

Hypoxia-induced factors

IFN-γ :

Interferon-gamma

IL-6 :

Interleukin-6

DG-SGZ :

Dentate gyrus-subgranular zone

LPS :

Lipopolysaccharide

BAX :

Bcl-2-associated X protein

ERK1/2 :

Extracellular signalling-regulated protein kinases 1 &2

CVS :

Chronic variable stress

NRF-1 :

Nuclear respiratory factor-1

CREB :

CAMP-response element-binding protein

cAMP :

Cyclic adenosine monophosphate

NLRP3 :

NLR family pyrin domain containing 3

References

  • Abe N, Uchida S, Otsuki K, Hobara T, Yamagata H, Higuchi F, Shibata T, Watanabe Y (2011) Altered sirtuindeacetylase gene expression in patients with a mood disorder. J Psychiatr Res 45:1106–1112

    Article  PubMed  Google Scholar 

  • Abe-Higuchi N, Uchida S, Yamagata H, Higuchi F, Hobara T, Hara K, Kobayashi A, Watanabe Y (2016) Hippocampal sirtuin 1 signaling mediates depression-like behavior. Biol Psychiatry 80:815–826

    Article  CAS  PubMed  Google Scholar 

  • Albeh KA, Elserogy Y, Sherif TM, Noaman MM, Khalifa H, Esam N (2018) Hormonal level and serum serotonin in patients with first episode mania: a case–control study. Middle East Current Psychiatry 25(3):116–121

    Article  Google Scholar 

  • Álvarez-Cilleros D, Martín MÁ, Goya L, Ramos S (2018) (−)-Epicatechin and the colonic metabolite 3, 4-dihydroxyphenylacetic acid protect renal proximal tubular cell against high glucose-induced oxidative stress by modulating NOX-4/SIRT-1 signalling. J Funct Foods 1(46):19–28

  • Arioz BI, Tastan B, Tarakcioglu E, Tufekci KU, Olcum M, Ersoy N, Bagriyanik A, Genc K, Genc S (2019) Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT-1/Nrf2 pathway. Front Immunol 10:1511. https://doi.org/10.3389/fimmu.2019.01511

  • Bellet MM, Nakahata Y, Boudjelal M, Watts E, Mossakowska DE, Edwards KA, Cervantes M, Astarita G, Loh C, Ellis JL et al (2013) Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT-1. Proc Natl Acad Sci USA 110:3333–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biason-Lauber A et al (2013) Identification of a SIRT-1 mutation in a family with type 1 diabetes. Cell Metab 17:448–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brochier C, Dennis G, Rivieccio MA et al (2013) Specific acetylation of p53 by HDAC inhibition prevents DNA damageinduced apoptosis in neurons. J Neurosci 33(20:8621–8632

  • Canto C, Menzies KJ, Auwerx J (2015) NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 22:31–53

  • Cao S, Shrestha S, Li J, Yu X, Chen J, Yan F et al (2017) Melatonin-mediated mitophagy protects against early brain injury after subarachnoid hemorrhage through inhibition of NLRP3 inflammasome activation. Sci Rep 7:2417. https://doi.org/10.1038/s41598-017-02679-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaiprasongsuk A, Lohakul J, Soontrapa K, Sampattavanich S, Akarasereenont P, Panich U (2017) Activation of Nrf2 reduces UVA-mediated MMP-1 upregulation via MAPK/AP-1 signaling cascades: the photoprotective effects of sulforaphane and hispidulin. J Pharmacol Exp Ther 360(3):388–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang HC, Guarente L (2013) SIRT-1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153:1448–1460

  • Chen K, Fan J, Luo ZF, Yang Y, Xin WJ, Liu CC (2018) Reduction of SIRT-1 epigenetically upregulates NALP1 expression and contributes to neuropathic pain induced by chemotherapeutic drug bortezomib. J Neuroinflammation 15:292

  • Codocedo JF, Allard C, Godoy JA, Varela-Nallar L, Inestrosa NC (2012) SIRT-1 regulates dendritic development in hippocampal neurons. PLoS One 7:e47073

  • Corpas R, Revilla S, Ursulet S, Castro-Freire M, Kaliman P, Petegnief V et al (2017) SIRT-1 overexpression in mouse hippocampus induces cognitive enhancement through Proteostatic and neurotrophic mechanisms. Mol Neurobiol 54:5604–5619

    Article  CAS  PubMed  Google Scholar 

  • D’Onofrio N, Servillo L, Balestrieri ML (2018) SIRT-1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxid Redox Signal 28(8):711–732. https://doi.org/10.1089/ars.2017.7178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damiano S, La Rosa G, Sozio C, Cavaliere G, Trinchese G, Raia M, Paternò R, Mollica MP, Avvedimento VE, Santillo M (2021) 5-hydroxytryptamine modulates maturation and mitochondria function of human oligodendrocyte progenitor M03–13 cells. Int J Mol Sci 22(5):2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Fan C, Hu W, Jiang S, Ma Z, Yan X et al (2016) Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling. J Pineal Res 60:253–262. https://doi.org/10.1111/jpi.12300

  • Donmez G, Outeiro TF (2013) SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 5(3):344–352. https://doi.org/10.1002/emmm.201302451. MarEpub 2013 Feb 18. PMID: 23417962; PMCID: PMC3598076

  • Douglas DN, Pu CH, Lewis JT, Bhat R, Anwar-Mohamed A, Logan M, ... Kneteman NM (2016) Oxidative stress attenuates lipid synthesis and increases mitochondrial fatty acid oxidation in hepatoma cells infected with hepatitis C virus. J Biol Chem 291(4):1974–1990

  • Duan C-M, Zhang J-R, Wan T-F, Wang Y, Chen H-S, Liu L (2019) SRT2104 attenuates chronic unpredictable mild stress-induced depressive-like behaviors and imbalance between microglial M1 and M2 phenotypes in the mice. Behav Brain Res 112296. https://doi.org/10.1016/j.bbr.2019.112296

  • Duan WX, He MD, Mao L, Qian FH, Li YM, Pi HF et al (2015) NiO nanoparticles induce apoptosis through repressing SIRT-1 in human bronchial epithelial cells. Toxicol Appl Pharmacol 286:80–91

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Guang H, Zhang H, Chen D, Ding L, Fan X, Xue F, Gan Z, Wang Y, Mao S, Hu L, Gong Y (2018) SIRT-1 mediates apelin-13 in ameliorating chronic normobaric hypoxia-induced anxiety-like behavior by suppressing NF-κB pathway in mice hippocampus. Neuroscience 15(381):22–34. https://doi.org/10.1016/j.neuroscience.2018.04.013. Epub 2018 Apr 20 PMID: 29680708

  • Ferland CL, Schrader LA (2011) Regulation of histone acetylation in the hippocampus of chronically stressed rats: a potential role of sirtuins. Neuroscience 174:104–114

  • Ferland CL, Hawley WR, Puckett RE et al (2013) Sirtuin activity in dentate gyrus contributes to chronic stress-induced behavior and extracellular signal-regulated protein kinases 1 and 2 cascade changes in the hippocampus. Biol Psychiatry 74(12):927–935

  • Fonseca-Kelly Z, Nassrallah M, Uribe J, Khan RS, Dine K, Dutt M, Shindler KS (2012) Resveratrol neuroprotection in a chronic mouse model of multiple sclerosis. Front Neurol 3:84

  • Gao J, Wang WY, Mao YW, Gräff J, Guan JS, Pan L, ... Tsai LH (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466(7310):1105–1109

  • Ge L, Liu L, Liu H, Liu S, Xue H, Wang X, ... Liu D (2015) Resveratrol abrogates lipopolysaccharide-induced depressive-like behavior, neuroinflammatory response, and CREB/BDNF signaling in mice. Eur J Pharmacol 768:49–57

  • Han S, Choi JR, Soon Shin K, Kang SJ (2012) Resveratrol upregulated heat shock proteins and extended the survival of G93A-SOD1 mice. Brain Res 1483:112–117

    Article  CAS  PubMed  Google Scholar 

  • Hasler G, Northoff G (2011) Discovering imaging endophenotypes for major depression. Mol Psychiatry 16:604–619

    Article  CAS  PubMed  Google Scholar 

  • Hatch J, Andreazza A, Olowoyeye O, Rezin GT, Moody A, Goldstein BI (2015) Cardiovascular and psychiatric characteristics associated with oxidative stress markers among adolescents with bipolar disorder. J Psychosom Res 79:222–227

    Article  PubMed  Google Scholar 

  • Herskovits AZ, Guarente L (2014) SIRT1 in neurodevelopment and brain senescence. Neuron 81(3):471–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hori YS, Kuno A, Hosoda R, Horio Y (2013) Regulation of FOXOs and p53 by SIRT-1 modulators under oxidative stress. PLoS One 8:e73875

  • Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13:225–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Wang L, Chen S, Liu X, Li H, Lu X, ... Gu D (2014) Association between the SIRT1 mRNA expression and acute coronary syndrome. J Atheroscler Thromb 24844

  • Huang B, Zhang W, Wei L, Chen S, Wang T, Fu R (2018a) Resveratrol down-regulates endothelin type B receptors in vascular smooth muscle cells via SIRT-1/ERK1/2/NF-кBsignaling pathways. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2018.09.022

  • Huang J, Liu W, Doycheva DM, Gamdzyk M, Lu W, Tang J, Zhang JH (2019) Ghrelin attenuates oxidative stress and neuronal apoptosis via GHSR-1α/AMPK/SIRT-1/PGC-1α/UCP2 pathway in a rat model of neonatal HIE. Free Radical Biol Med 1(141):322–337

    Article  CAS  Google Scholar 

  • Huang R, Wu F, Zhao J, Li HB, Ding J, Xiong KR (2018b) Electroacupuncture plus gastrodin improves learning-memory ability possibly by up-regulating expression of SIRT 1 and PGC-1 ɑ in hippocampal CA 1 region of Alzheimer's disease rats. Zhen ci yanjiu= Acupuncture research 43(3):140–5

  • Hubbard BP, Gomes AP, Dai H, Li J, Case AW, Considine T, Riera TV, Lee JE, e SY, Lamming DW et al (2013) Evidence for a common mechanism of SIRT-1 regulation by allosteric activators. Science 339:1216–1219

  • Hurley LL, Akinfiresoye L, Kalejaiye O, Tizabi Y (2014) Antidepressant effects of resveratrol in an animal model of depression. Behav Brain Res 268:1–7

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Hiratsuka M, Osaki M, Yamada H, Kishimoto I, Yamaguchi S, ... Oshimura M (2007) SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene 26(7):945–957

  • Jenwitheesuk A, Boontem P, Wongchitrat P, Tocharus J, Mukda S, Govitrapong P (2017) Melatonin regulates the aging mouse hippocampal homeostasis via the sirtuin1-FOXO1 pathway. EXCLI J 16:340

    PubMed  PubMed Central  Google Scholar 

  • Jeong H, Cohen DE, Cui L, Supinski A, Savas JN, Mazzulli JR, Yates JR 3rd, Bordone L, Guarente L, Krainc D (2012) SIRT-1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med 18:159–165

    Article  CAS  Google Scholar 

  • Jiang N, Jingwei L, Wang H, Huang H, Wang Q, Zeng G, Li S, Liu X (2020) Ginsenoside 20(S)-protopanaxadiol attenuates depressive-like behaviour and neuroinflammation in chronic unpredictable mild stress-induced depressive rats. Behav Brain Res. https://doi.org/10.1016/j.bbr.2020.112710

    Article  PubMed  Google Scholar 

  • Jiang R, Babyak MA, Brummett BH, Siegler IC, Kuhn CM, Williams RB (2017) Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism interacts with gender to influence cortisol responses to mental stress. Psychoneuroendocrinology 1(79):13–19

    Article  CAS  Google Scholar 

  • Jiang H et al (2013) SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496:110–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang M, Wang J, Fu J, Du L, Jeong H, West T, Xiang L, Peng Q, Hou Z, Cai H et al (2012) Neuroprotective role of SIRT-1 in mammalian models of Huntington’s disease through activation of multiple SIRT-1 targets. Nat Med 18:153–158

  • Jing H, Lin H (2015) Sirtuins in epigenetic regulation. Chem Rev 115:2350–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joerg R, Leheste JR, Torres G (2015) Resveratrol: brain effffects on SIRT-1, GPR50 and photoperiodic signaling. Front Mol Neurosci 8:61. https://doi.org/10.3389/fnmol.2015.00061

    Article  CAS  Google Scholar 

  • Kang H, Khang R, Ham S, Jeong GR, Kim H, Jo M, Lee BD, Lee YI, Jo A, Park C, Kim H (2017) Activation of the ATF2/CREB-PGC-1α pathway by metformin leads to dopaminergic neuroprotection. Oncotarget 8(30):48603

    Article  PubMed  PubMed Central  Google Scholar 

  • Katto J, Engel N, Abbas W, Herbein G, Mahlknecht U (2013) Transcription factor NFκB regulates the expression of the histone deacetylase SIRT1. Clin Epigenetics 5(1):1–9

    Article  CAS  Google Scholar 

  • Keshavarz M (2017) Glial cells as key elements in the pathophysiology and treatment of bipolar disorder. Acta Neuropsychiatrica 29(3):140–152

  • Khanna A, Chakraborty S, Tripathi SJ, Acharjee A, Rao S, Trigun SK (2020) SIRT-1 activation by resveratrol reverses atrophy of apical dendrites of hippocampal CA1 pyramidal neurons and neurobehavioral impairments in moderate grade hepatic encephalopathy rats. J Chem Neuroanat 106:101797

  • Khyati IM, NamitaAgrawal&Vinod Kumar, (2020) Melatonin and curcumin reestablish disturbed circadian gene expressions and restore locomotion ability and eclosion behavior in Drosophila model of Huntington’s disease. Chronobiol Int. https://doi.org/10.1080/07420528.2020.1842752

    Article  PubMed  Google Scholar 

  • Kim TW, Park SS, Shin MS, Park HS, Baek SS (2020) Treadmill exercise ameliorates social isolation-induced memory impairment by enhancing silent information regulator-1 expression in rats. J Exerc Rehabil 16(3):227

  • Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, ... Tsai LH (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J 26(13):3169–3179

  • Kodali M, Parihar VK, Hattiangady B, Mishra V, Shuai B, Shetty AK (2015) Resveratrol prevents age-related memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature, and reduced glial activation. Sci Rep 5(1):8075

  • Kolla NJ, Bortolato M (2020) The role of monoamine oxidase A in the neurobiology of aggressive, antisocial, and violent behavior: a tale of mice and men. Prog Neurobiol 194:101875

  • Komaki H, Faraji N, Komaki A, Shahidi S, Etaee F, Raoufi S, Mirzaei F (2019) Investigation of protective effects of coenzyme Q10 on impaired synaptic plasticity in a male rat model of Alzheimer’s disease. Brain Res Bull 147:14–21. https://doi.org/10.1016/j.brainresbull.2019.01.025. Epub 2019 Feb 2 PMID: 30721766

  • Kong Y, Li K, Fu T, Wan C, Zhang D, Song H, Zhang Y, Liu N, Gan Z, Yuan L (2016) Quercetin ameliorates Aβ toxicity in Drosophila AD model by modulating cell cycle-related protein expression. Oncotarget 7(42). https://doi.org/10.18632/oncotarget.11963

  • Labban S, Alghamdi BS, Alshehri FS, Kurdi M (2021) Effects of melatonin and resveratrol on recognition memory and passive avoidance performance in a mouse model of Alzheimer’s disease. Behav Brain Res 402:113100

  • Li C, Wang F, Miao P, Yan L, Liu S, Wang X, ... Gu Z (2020) miR-138 increases depressive-like behaviors by targeting SIRT1 in hippocampus. Neuropsychiatr Dis Treat 16:949

  • Li XH, Chen C, Tu Y, Sun HT, Zhao ML, Cheng SX, ... Zhang S (2013) Sirt1 promotes axonogenesis by deacetylation of Akt and inactivation of GSK3. Mol Neurobiol 48(3):490–499

  • Li W, Guo B, Tao K, Li F, Liu Z, Yao H, Feng a, D., Liu, X. (2019) Inhibition of SIRT-1 in hippocampal CA1 ameliorates PTSD-like behaviors in mice by protections of neuronal plasticity and serotonin homeostasis via NHLH2/MAO-A pathway. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2019.08.060

    Article  PubMed  PubMed Central  Google Scholar 

  • Libert S, Pointer K, Bell EL, Das A, Cohen DE, Asara JM, Kapur K, Bergmann S, Preisig M, Otowa T, Kendler KS, Chen X, Hettema JH, van den Oord EJ, Rubio PJ, Guarente1 L (2011) SIRT-1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell 147(7):1459–1472. https://doi.org/10.1016/j.cell.2011b.10.054

  • Liu CM, Wang RY, Saijilafu, Jiao ZX, Zhang BY, Zhou FQ (2013) MicroRNA-138 and SIRT-1 form a mutual negative feedback loop to regulate mammalian axon regeneration Genes Dev 27:1473–1483

  • Liu L, Zhang Q, Cai Y, Sun D, He X, Wang L, ... Fan X (2016) Resveratrol counteracts lipopolysaccharide-induced depressive-like behaviors via enhanced hippocampal neurogenesis. Oncotarget 7(35):56045

  • Liu X, Yang Z, Li H, Luo W, Duan W, Zhang J, Zhu Z, Liu M, Li S, Xin X, Wu H, Xian S, Liu M, Liu C, Shen C (2020) Chrysophanol alleviates metabolic syndrome by activating the SIRT6/AMPK signaling pathway in brown adipocytes. Oxid Med Cell Longev 2020:7374086, 14. https://doi.org/10.1155/2020/7374086

  • Luo XJ, Zhang C (2016) Down-regulation of SIRT1 gene expression in major depressive disorder. Am J Psychiatry 173(10):1046–1046

  • Maes M, Simeonova D, Stoyanov D, Leunis JC (2019) Upregulation of the nitrosylome in bipolar disorder type 1 (BP1) and major depression, but not BP2: Increased IgM antibodies to nitrosylated conjugates are associated with indicants of leaky gut. Nitric Oxide 1(91):67–76

    Article  CAS  Google Scholar 

  • Manna AE, Achari SK (2017) Jain, Vitamin D supplementation inhibits oxidative stress and upregulate SIRT-1/AMPK/GLUT4 cascade in high glucose-treated 3T3L1 adipocytes and in adipose tissue of high fat diet-fed diabetic mice. Arch Biochem Biophys. https://doi.org/10.1016/j.abb.2017.01.002

    Article  PubMed  Google Scholar 

  • Mao Q, Gong X, Zhou C, Tu Z, Zhao L, Wang L, Wang X, Sun L, Xia J, Lian B, Chen J (2017) Up-regulation of SIRT6 in the hippocampus induced rats with depression-like behavior via the block Akt/GSK3β signaling pathway. Behav Brain Res 14(323):38–46

    Article  CAS  Google Scholar 

  • Mayo JC, Sainz RM, Gonzalez Menendez P, Cepas V, Tan DX, Reiter RJ (2017) Melatonin and sirtuins: A “not-so unexpected” relationship. J Pineal Res 62:12391. https://doi.org/10.1111/jpi.12391

  • Mei Z, Zhang X, Yi J et al (2016) Sirtuins in metabolism, DNA repair and cancer. J Exp Clin Cancer Res 35:182. https://doi.org/10.1186/s13046-016-0461-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McEvoy PM, Hyett MP, Ehring T, Johnson SL, Samtani S, Anderson R, Moulds ML (2018) Transdiagnostic assessment of repetitive negative thinking and responses to positive affect: structure and predictive utility for depression, anxiety, and mania symptoms. J Affect Disord https://doi.org/10.1016/j.jad.2018.02.072

  • Miao Y, Zhao S, Gao Y, Wang R, Wu Q, Wu H, Luo T (2016) Curcumin pretreatment attenuates inflammation and mitochondrial dysfunction in experimental stroke: The possible role of Sirt1 signaling. Brain Res Bull 121:9–15

  • Michán S, Li Y, Chou MM-H, Parrella E, Ge H, Long JM et al (2010) SIRT-1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 30:9695–9707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, ... Gan L (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67(6):953–966

  • Moon MH, Jeong JK, Lee YJ, Seol JW, Jackson CJ, Park SY (2013) SIRT1, a class III histone deacetylase, regulates TNF-α-induced inflammation in human chondrocytes. Osteoarthritis Cartilage 21(3):470–480

    Article  PubMed  Google Scholar 

  • Morgan M, Liu Z (2011) Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21:103–115

  • Morris BJ (2013) Sevensirtuins for seven deadly diseases of aging, Free Radic. Biol Med 56:133–171

    CAS  Google Scholar 

  • Mudo G, Mäkelä J, Di Liberto V, Tselykh TV, Olivieri M, Piepponen P, ... Lindholm D (2012) Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. Cell Mol Life Sci 69(7):1153–1165

  • Muneer A (2016) Bipolar disorder: role of inflammation and the development of disease biomarkers. Psychiatry Investig 13(1):18

    Article  CAS  PubMed  Google Scholar 

  • Nasimi P, Tabandeh MR, Vahdati A, Khatamsaz S (2015) Busulfan induces oxidative stress-and Bcl-2 family gene-related apoptosis in epididymal sperm and testis of adult male mice. Physiology and Pharmacology 19(3):208–215

    Google Scholar 

  • Niu J, Cao Y, Ji Y (2020) ResveratrolaSIRT-1activatorameliorates MK-801-induced cognitive and motor impairments in a neonatal rat model of schizophrenia. Front Psychiatry 11:716. https://doi.org/10.3389/fpsyt.2020.00716

    Article  PubMed  PubMed Central  Google Scholar 

  • Ng F, Wijaya L, Tang BL (2015) SIRT-1 in the brain-connections with aging-associated disorders and lifespan. Front Cell Neurosci 9:64. Published 2015 Mar 9. https://doi.org/10.3389/fncel.2015.00064

  • O’Connell KS, McGregor NW, Lochner C, Emsley R, Warnich L (2018) The genetic architecture of schizophrenia, bipolar disorder, obsessive-compulsive disorder and autism spectrum disorder. Mol Cell Neurosci 1(88):300–307

    Article  CAS  Google Scholar 

  • Okun E, Marton D, Cohen D, Griffioen K, Kanfi Y, Illouz T et al (2017) Sirt6 alters adult hippocampal neurogenesis. PLoS One 12(6): e0179681. https://doi.org/10.1371/journal.pone.0179681

  • Panes JD, Godoy PA, Silva-Grecchi T, Celis MT, Ramirez-Molina O, Gavilan J, Muñoz-Montecino C, Castro PA, Moraga-Cid G, Yévenes GE, Guzmán L, Salisbury JL, Trushina E, Fuentealba J (2020) Changes in PGC-1α/SIRT1 Signaling Impact on Mitochondrial Homeostasis in Amyloid-Beta Peptide Toxicity Model. Front Pharmacol 11:709. https://doi.org/10.3389/fphar.2020.00709

  • Panossian L, Fenik P, Zhu Y, Zhan G, McBurney MW, Veasey S (2011) SIRT-1 regulation of wakefulness and senescence-like phenotype in wake neurons. J Neurosci 31(11):4025–4036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL et al (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148:421–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulose N, Raju R (2015) Sirtuin regulation in aging and injury. Biochim Biophys Acta (BBA) - Mol Basis Dis 1852(11):2442–2455

  • Pu Y, Zhang H, Wang P, Zhao Y, Li Q, Wei X, Cui Y, Sun J, Shang Q, Liu D, Zhu Z (2013) Dietary curcumin ameliorates aging-related cerebrovascular dysfunction through the AMPK/uncoupling protein 2 pathway. Cell Physiol Biochem 32:1167–1177. https://doi.org/10.1159/000354516

  • Puig-Parnau I, Garcia-Brito S, Faghihi N et al (2020) Intracranial self-stimulation modulates levels of SIRT-1 protein and neural plasticity-related microRNAs. Mol Neurobiol 57:2551–2562. https://doi.org/10.1007/s12035-020-01901-w

    Article  CAS  PubMed  Google Scholar 

  • Qi XR, Kamphuis W, Shan L (2019) Astrocyte changes in the prefrontal cortex from aged non-suicidal depressed patients. Front Cell Neurosci 12(13):503

    Article  CAS  Google Scholar 

  • Rada P, Pardo V, Mobasher MA, García-Martínez I, Ruiz L, González-Rodríguez Á, Sanchez-Ramos C, Muntané J, Alemany S, James LP, Simpson KJ (2018) SIRT-1 controls acetaminophen hepatotoxicity by modulating inflammation and oxidative stress. Antioxid Redox Signal 28(13):1187–1208

    Article  CAS  PubMed  Google Scholar 

  • Rafalski VA, Ho PP, Brett JO, Ucar D, Dugas JC, Pollina EA, Chow LM, Ibrahim A, Baker SJ, Barres BA (2013) Expansion of oligodendrocyte progenitor cells following SIRT-1 inactivation in the adult brain. Nat Cell Biol 15:614–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramadori G, Fujikawa T, Anderson J, Berglund ED, Frazao R, Michan S, Vianna CR, Sinclair DA, Elias CF, Coppari R (2011) SIRT-1 deacetylase in SF1 neurons protects against metabolic imbalance. Cell Metab 14:301–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramadori G, Lee CE, Bookout AL, Lee S, Williams KW, Anderson J, Elmquist JK, Coppari R (2008) Brain SIRT-1:anatomical distribution and regulation by energy availability. J Neurosci 28(40):9989–9996

  • Revilla S, Suñol C, García-Mesa Y, Giménez-Llort L, Sanfeliu C, & Cristòfol R (2014) Physical exercise improves synaptic dysfunction and recovers the loss of survival factors in 3xTg-AD mouse brain. Neuropharmacology 81:55–63

  • Rhee SJ, Kim H, Lee Y, Lee HJ, Park CH, Yang J, Kim YK, Kym S, Ahn YM (2020) Comparison of serum microbiome composition in bipolar and major depressive disorders. J Psychiatr Res 1(123):31–38

    Article  Google Scholar 

  • Roux P, Raust A, Cannavo AS, Aubin V, Aouizerate B, Azorin JM, Bellivier F, Belzeaux R, Bougerol T, Cussac I, Courtet P (2017) Associations between residual depressive symptoms, cognition, and functioning in patients with euthymic bipolar disorder: results from the FACE-BD cohort. Br J Psychiatry 211(6):381–387

    Article  PubMed  Google Scholar 

  • Rubovitch V, Pharayra A, Har-Even M, Dvir O, Mattson MP, Pick CG (2019) Dietary energy restriction ameliorates cognitive impairment in a mouse model of traumatic brain injury. J Mol Neurosci 67(4):613–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen A, Kaarniranta K (2010) Glycolysis links p53 function with NF-κBsignaling: Impact on cancer and aging process. J Cell Physiol 224(1):1–6

    CAS  PubMed  Google Scholar 

  • Sanoobar M, Dehghan P, Khalili M, Azimi A, Seifar F (2016) Coenzyme Q10 as a treatment for fatigue and depression in multiple sclerosis patients: a double blind randomized clinical trial. Nutr Neurosci 19(3):138–143

    Article  CAS  PubMed  Google Scholar 

  • Serra G, Koukopoulos A, De Chiara L, Koukopoulos A, Sani G, Tondo L, ... Baldessarini R (2017) Early clinical predictors and correlates of long-term morbidity in bipolar disorder. Eur Psychiatry 43:35–43. https://doi.org/10.1016/j.eurpsy.2017.02.480

  • Sharma N, Upadhayay S, Shandilya A, Sahu R, Singh A, Rajkhowa B, Mehan S (2021) Neuroprotection by solanesol against ethidium bromide-induced multiple sclerosis-like neurobehavioral, molecular, and neurochemical alterations in experimental rats. Phytomedicine Plus 1(4):100051

  • Shi L, Zhang J, Wang Y, Hao Q, Chen H, Cheng X (2020) SIRT-1 regulates oxidative stress in oxygen-glucose deprived hippocampal neurons. Front Pediatr 14(8):455

    Article  Google Scholar 

  • Shinozaki S, Chang K, Sakai M, Shimizu N, Yamada M, Tanaka T, Nakazawa H, Ichinose F, Yamada Y, Ishigami A, Ito H, Ouchi Y, Starr ME, Saito H, Shimokado K, Stamler JS, Kaneki M (2014) Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylaseSIRT-1 to increase acetylation and activation of p53 and p65. Sci Signal 7:ra106

  • Shukla S, Tekwani BL (2020) Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation. Front Pharmacol 24(11):537

    Article  CAS  Google Scholar 

  • Singh P, Hanson PS, Morris CM (2017) SIRT-1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson’s disease. BMC Neurosci 18:46. https://doi.org/10.1186/s12868-017-0364-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sola-Sevilla N, Ricobaraza A, Hernandez-Alcoceba R, Aymerich MS, Tordera RM, Puerta E (2021) Understanding the potential role of sirtuin 2 on aging: consequences of SIRT2.3 overexpression in senescence. Int J Mol Sci 22(6):3107. https://doi.org/10.3390/ijms22063107

  • Steinberg SF (2015) Mechanisms for redox-regulation of protein kinase C. Front Pharmacol 6:128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stern S, Santos R, Marchetto MC, Mendes AP, Rouleau GA, Biesmans S, Wang QW, Yao J, Charnay P, Bang AG, Alda M (2018) Neurons derived from patients with bipolar disorder divide into intrinsically different sub-populations of neurons, predicting the patients’ responsiveness to lithium. Mol Psychiatry 23(6):1453–1465

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Chen Q, Meng Z, Sun L, Zhu L, Liu J, ... Wang X (2017) Suppression of Sirtuin-1 increases IL-6 expression by activation of the Akt pathway during allergic asthma. Cell Physiol Biochem 43(5)1950–1960

  • Tang BL (2016) Sirt1 and the mitochondria. Mol Cells 39(2):87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Chen Y, Fang X, Wang Y, Fan W, Zhang C (2018) SIRT1 rs3758391 and major depressive disorder: new data and meta-analysis. Neurosci Bull 34(5):863–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao X, Chen L, Cai L, Ge S, Deng X (2017) Regulatory effects of the AMPKαSIRT-1 molecular pathway on insulin resistance in PCOS mice: an in vitro and in vivo study. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2017.09.154

    Article  PubMed  Google Scholar 

  • Torres-Barredo GA, HotakaAtarashi AK, Hirata A, Endo A, Nakagawa J (2018) Intracellular localization of sirtuin and cell length analysis of Lactobacillus paracasei suggest possible role of sirtuin in cell division and cell shape regulation. Biosci Biotechnol Biochem. https://doi.org/10.1080/09168451.2018.1443790

    Article  PubMed  Google Scholar 

  • Udomruk S, Kaewmool C, Phitak T, Pothacharoen P, Kongtawelert P (2020) Sesamin promotes neurite outgrowth under insufficient nerve growth factor condition in PC12 cells through ERK1/2 pathway and SIRT-1 modulation. Evid Based Complement Alternat Med 26:2020

  • Volonte D, Zou H, Bartholomew JN, Liu Z, Morel PA, Galbiati F (2015) Oxidative stress-induced inhibition of SIRT-1 by caveolin-1 promotes p53-dependent premature senescence and stimulates the secretion of interleukin 6 (IL-6). J BiolChem 290:4202–4214

    CAS  Google Scholar 

  • Waldman M, Cohen K, Yadin D, Nudelman V, Gorfil D, Laniado-Schwartzman M et al (2018) Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving ‘SIRT-1 and PGC-1αlpha.’ Cardiovasc Diabetol 17(1):111. https://doi.org/10.1186/s12933-018-0754-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan X, Wen JJ, Koo SJ, Liang LY, Garg NJ (2016) SIRT1-PGC1α-NFκB pathway of oxidative and inflammatory stress during Trypanosoma cruzi infection: benefits of SIRT1-targeted therapy in improving heart function in Chagas disease. PLoS Pathog 12(10):e1005954

  • Wang S, Wang J, Zhao A, Li J (2017a) SIRT1 activation inhibits hyperglycemia-induced apoptosis by reducing oxidative stress and mitochondrial dysfunction in human endothelial cells. Mol Med Rep 16(3):3331–3338

  • Wang Y, Feng Y, Fu Q, Li L (2013) Panax notoginsenoside Rb1 ameliorates Alzheimer’s disease by upregulating brain-derived neurotrophic factor and downregulating Tau protein expression. Exp Ther Med 6(3):826–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Dwivedi Y (2017) Transcriptional profiling of mitochondria associated genes in prefrontal cortex of subjects with major depressive disorder. World J Biol Psychiatry 18(8):592–603

    Article  PubMed  Google Scholar 

  • Wang R, Zhang Y, Li J, Zhang C (2017b) Resveratrol ameliorates spatial learning memory impairment induced by Aβ1–42 in rats. Neuroscience 344:39–47

    Article  CAS  PubMed  Google Scholar 

  • Weigand KM, Swarts HG, Fedosova NU, Russel FG, Koenderink JB (2012) Na, K-ATPase activity modulates Src activation: a role for ATP/ADP ratio. BiochimBiophys Acta 1818(5):1269–1273

    CAS  Google Scholar 

  • Wu L, Zhang G, Guo C, Zhao X, Shen D, Yang N (2020) MiR-128-3p mediates TNF-α-induced inflammatory responses by regulating SIRT-1 expression in bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 521(1):98–105

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Yang L, Jiang J, Ni Y, Zhu J, Zheng X, Wang Q, Lu X, Fu Z (2018) Chronic glucocorticoid treatment induced circadian clock disorder leads to lipid metabolism and gut microbiota alterations in rats. Life Sci 1(192):173–182

    Article  CAS  Google Scholar 

  • Wu S-B, Wu Y-T, Wu T-P, Wei Y-H (2014) Role of AMPK-mediated adaptive responses in human cells with mitochondrial dysfunction to oxidative stress. Biochim Biophys Acta Gen Subj 1840:1331–1344

  • Xie J, Zhang X, Zhang L (2013) Negative regulation of inflammation by SIRT1. Pharmacol Res 67(1):60–67

    Article  CAS  PubMed  Google Scholar 

  • Yan D, Jin C, Cao Y, Wang L, Lu X, Yang J, ... Cai Y (2017) Effects of aluminium on long-term memory in rats and on SIRT 1 mediating the transcription of CREB-dependent gene in hippocampus. Basic Clin Pharmacol Toxicol 121(4)342–352

  • Yang H, Zhang W, Pan H, Feldser HG, Lainez E, Miller C, Leung S, Zhong Z, Zhao H, Sweitzer S, Considine T, Riera T, Suri V, White B, Ellis JL, Vlasuk GP, Loh C (2012) SIRT-1 activators suppress inflammatory responses through promotion of p65 deacetylation and inhibition of NF-kappaB activity. PloS One 7:e46364

  • Yao L, Gu X, Song Q, Wang X, Huang M, Hu M, Hou L, Kang T, Chen J, Chen H, Gao X (2016) Nanoformulated alpha-mangostin ameliorates Alzheimer’s disease neuropathology by el evating LDLR expression and accelerating amyloid-beta clearance. J Control Release. https://doi.org/10.1016/j.jconrel.2016.01.055

  • Yirmiya R, Rimmerman N, Reshef R (2015) Depression as a microglial disease. Trends Neurosci 38(10):637–658

  • Yuan Y, Cruzat VF, Newsholme P, Cheng J, Chen Y, Lu Y (2016) Regulation of SIRT1 in aging: roles in mitochondrial function and biogenesis. Mech Ageing Dev 155:10–21

  • Zhang QS, Liu W, Lu GX (2017a) miR-200a-3p promotes β-Amyloid-induced neuronal apoptosis through down-regulation of SIRT1 in Alzheimer’s disease. J Biosci 42(3):397–404

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Wu ZG, Zhao GQ, Wang F, Fang YR (2016) Identification of IL6 as a susceptibility gene for major depressive disorder. Sci Rep 6

  • Zhang M, Zhang Q, Hu Y et al (2017b) miR-181a increases FoxO1 acetylation and promotes granulosa cell apoptosis via SIRT-1 downregulation. Cell Death Dis 8:e3088. https://doi.org/10.1038/cddis.2017.467

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang L, Meng L, Cao G, Yu Wu (2019) Sirtuin 6 overexpression relieves sepsis-induced acute kidney injury by promoting autophagy. Cell Cycle. https://doi.org/10.1080/15384101.2019.1568746

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Wu Y, Ding X, Shi N, Cai Y, Pan ZZ (2020) SIRT-1 decreases emotional pain vulnerability with associated CaMKIIα deacetylation in central amygdala. J Neurosci 40(11):2332–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou JY, Poudel A, Welchko R, Mekala N, Chandramani-Shivalingappa P, Rosca MG, Li L (2019) Liraglutide improves insulin sensitivity in high fat diet induced diabetic mice through multiple pathways. Eur J Pharmacol 861:172594

  • Zhou Y, Wang S, Li Y, Yu S, Zhao Y (2017) SIRT-1/PGC-1alpha signaling promotes mitochondrial functional recovery and reduces apoptosis after intracerebralhemorrhage in rats. Front Mol Neurosci 10:443

    Article  PubMed  CAS  Google Scholar 

  • Zhu Q, Tang T, Liu H, Sun Y, Wang X, Liu Q, Yang L, Lei Z, Huang Z, Chen Z, Lei Q (2020) Pterostilbene attenuates cocultured BV-2 microglial inflammation-mediated SH-SY5Y neuronal oxidative injury via SIRT-1 signalling. Oxid Med Cell Longev 4:2020

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Chairman, Mr. Parveen Garg, and Director, Dr. G. D. Gupta, ISF College of Pharmacy, Moga (Punjab), India, for their great vision and support.

Author information

Authors and Affiliations

Authors

Contributions

BR (Bidisha Rajkhowa) and (PS) Pranshul Sethi involved in the investigation, writing-original draft, review writing; SM (Sidharth Mehan) has contributed towards conceptualization, resource gathering, supervision, writing-review and critical editions. All authors read and approved the manuscript, and all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Sidharth Mehan.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkhowa, B., Mehan, S., Sethi, P. et al. Activation of SIRT-1 Signalling in the Prevention of Bipolar Disorder and Related Neurocomplications: Target Activators and Influences on Neurological Dysfunctions. Neurotox Res 40, 670–686 (2022). https://doi.org/10.1007/s12640-022-00480-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-022-00480-z

Keywords

Navigation