Skip to main content
Log in

The Chronic Oral Administration of Clobenzorex or Amphetamine Decreases Motor Behavior and Induces Glial Activation in the Striatum Without Dopaminergic Degeneration

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Described as amphetamine-like due to their structural and stimulant similarities, clobenzorex is one of the five most-commonly used drugs in Mexico for the treatment of obesity. Various studies have shown that amphetamines induce dopaminergic neurotoxicity and neuroinflammation in the striatum, symptoms which are associated with motor damage. For this reason, the present study aimed to evaluate the effect of chronic clobenzorex administration on motor behaviors, TH immunoreactivity, gliosis, and the neurodegenerative process in the striatum and substantia nigra pars compacta (SNpc). The present research was conducted on three experimental groups of male Wistar rats: the vehicle group, the amphetamine group (2 mg/kg), and the clobenzorex group (30 mg/kg). All groups were subject to oral administration every 24 h for 31 days. Motor activity and motor coordination were evaluated in the open field test and the beam walking test, respectively. The animals were euthanized after the last day of treatment to enable the extraction of their brains for the evaluation of tyrosine hydroxylase (TH) levels, the immunoreactivity of the glial cells, and the neurodegeneration of both the striatum and SNpc via amino-cupric-silver stain. The results obtained show that amphetamine and clobenzorex administration decrease motor activity and motor coordination in the beam walking test and cause increased gliosis in the striatum, while no significant changes were observed in terms of immunoreactivity to TH and neurodegeneration in both the striatum and SNpc. These results suggest that the chronic administration of clobenzorex may decrease motor function in a manner similar to amphetamine, via the neuroadaptive and non-neurotoxic changes caused to the striatum under this administration scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Angoa-Pérez M, Kane MJ, Briggs DI, Francescutti DM, Sykes CE, Shah MM, Thomas DM, Kuhn DM (2013) Mephedrone does not damage dopamine nerve endings of the striatum, but enhances the neurotoxicity of methamphetamine, amphetamine, and MDMA. J Neurochem 125(1):102–10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ares-Santos S, Granado N, Espadas I, Martinez-Murillo R, Moratalla R (2014) Methamphetamine causes degeneration of dopamine cell bodies and terminals of the nigrostriatal pathway evidenced by silver staining. Neuropsycho 39(5):1066–1080

    Article  CAS  PubMed  Google Scholar 

  • Armstrong V, Reichel CM, Doti JF, Crawford CA, McDougall SA (2004) Repeated amphetamine treatment causes a persistent elevation of glial fibrillary acidic protein in the caudate-putamen. Eur J Pharmacol 488(1–3):111–115

    Article  CAS  PubMed  Google Scholar 

  • Baumevieille M, Haramburu F, Bégaud B (1997) Abuse of prescription medicines in southwestern France. Annals of Pharma 31(7–8):847–850

    Article  CAS  PubMed  Google Scholar 

  • Biernaskie J, Chernenko G, Corbett D (2004) Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci 24(5):1245–1254

    Article  CAS  PubMed  Google Scholar 

  • Bovetto S, Richard D (1995) Functional assessment of the 5-HT 1A-, 1B-, 2A/2C-, and 3-receptor subtypes on food intake and metabolic rate in rats. Am J Physiol Regul Integr Comp Physiol 268(1):R14–R20

    Article  CAS  Google Scholar 

  • Cadet JL, Krasnova IN, Jayanthi S, Lyles J (2007) Neurotoxicity of substituted amphetamines: molecular and cellular mechanisms. Neurotoxicity Res 11(3–4):183–202

    Article  CAS  PubMed  Google Scholar 

  • Carmena A, Granado N, Ares-Santos A, Alberquilla S, Tizabi Y, Moratalla R (2015) Methamphetamine-induced toxicity in indusium griseum of mice is associated with astro- and microgliosis. Neurotox Res 27(3):209–16

    Article  CAS  PubMed  Google Scholar 

  • Clark KH, Wiley CA, Bradberry CW (2013) Psychostimulant abuse and neuroinflammation: emerging evidence of their interconnection. Neurotox Res 23(2):174–188

    Article  CAS  PubMed  Google Scholar 

  • Comer SD, Hart CL, Ward AS, Haney M, Foltin RW, Fischman MW (2001) Effects of repeated oral methamphetamine administration in humans. Psychopharmacol (Berl.) 155:397–404

    Article  CAS  Google Scholar 

  • Cornaert P, Camblin J, Graux P, Anaye B, Dutoit A, Croccel L (1986) Congestive cardiomyopathy in addiction to clobenzorex, an anorexigenic drug. Archives des maladies du coeur et des vaisseaux 79(4):515–518

    CAS  PubMed  Google Scholar 

  • Crifasi J, Long C (1996) Traffic fatality related to the use of methylenedioxymethamphetamine. J Forensic Sci 41(6):1082–1084

    Article  CAS  Google Scholar 

  • De Olmos JS, Beltramino CA, De Lorenzo SDO (1994) Use of an amino-cupric-silver technique for the detection of early and semiacute neuronal degeneration caused by neurotoxicants, hypoxia, and physical trauma. Neurotoxicol Teratology 16(6):545–561

    Article  PubMed  Google Scholar 

  • Docherty JR (2008) Pharmacology of stimulants prohibited by the World Anti-Doping Agency (WADA). British J Pharmacol 154(3):606–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisch AJ, Gaffney M, Weihmuller FB, O’Dell SJ, Marshall JF (1992) Striatal subregions are differentially vulnerable to the neurotoxic effects of methamphetamine. Brain Res 598(1–2):321–6

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Franco B, Morín-Zaragoza R (2013) Efectos adversos de fármacos anorexigénicos de liberación prolongada. Vertientes. Revista Especializada en Ciencias de la Salud, 16(1)

  • Friend DM, Keefe KA (2013) Glial reactivity in resistance to methamphetamine-induced neurotoxicity. J Neurochem 125(4):566–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Alonso D, Morgenstern-Kaplan D, Cohen-Welch A, Lozano-Cuenca J, López-Canales JS (2019) Possible mechanisms involved in the vasorelaxant effect produced by anorexigenic drugs in rat aortic rings. Med Sci (Basel). 7(3):39

    Google Scholar 

  • Gates J, Dubois S, Mullen N, Weaver B, Bédard M (2013) The influence of stimulants on truck driver crash responsibility in fatal crashes. Forensic Sci Int 228(1–3):15–20

    Article  PubMed  Google Scholar 

  • German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE (2015) Regulation of the dopamine and vesicular monoamine transporters: pharmacological targets and implications for disease. Pharmacol Rev 67(4):1005–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginovart N, Farde L, Halldin C, Swahn CG (1999) Changes in striatal D2-receptor density following chronic treatment with amphetamine as assessed with PET in nonhuman primates. Synapse 31(2):154–162

    Article  CAS  PubMed  Google Scholar 

  • Gjerde H, Strand MC, Mørland J (2015) Driving under the influence of non-alcohol drugs–an update. Part I: epidemiological studies. Forensic Sci Rev 27(2):89–113

  • Glasson B, Benakis A, Thomasset M (1971) Localisation, distribution, excretion and metabolism of the new, C14-labelled appetite depressant clobenzorex hydrochloride. Arzneimittelforschung 1971(21):1985–1992

    Google Scholar 

  • Gustavsen I, Mørland J, Bramness JG (2006) Impairment related to blood amphetamine and/or methamphetamine concentrations in suspected drugged drivers. Acc Anal Prevent 38(3):490–495

    Article  Google Scholar 

  • Halpin LE, Collins SA, Yamamoto BK (2014) Neurotoxicity of methamphetamine and 3, 4-methylenedioxymethamphetamine. Life sciences 97(1):37–44

    Article  CAS  PubMed  Google Scholar 

  • Heal DJ, Smith SL, Gosden J, Nutt DJ (2013) Amphetamine, past and present–a pharmacological and clinical perspective. J Psychopharmacol 27(6):479–496

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi M, Alam MR (1981) Enhancing effect of methamphetamine on ambulatory activity produced by repeated administration in mice. Pharmacol Biochem and Behavior 15(6):925–932

    Article  CAS  PubMed  Google Scholar 

  • Homer BD, Solomon TM, Moeller RW, Mascia A, DeRaleau L, Halkitis PN (2008) Methamphetamine abuse and impairment of social functioning: a review of the underlying neurophysiological causes and behavioral implications. Psychol Bull 134(2):301–10

    Article  PubMed  Google Scholar 

  • Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Molecular brain research 57(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Kalechstein AD, Newton TF, Green M (2003) Methamphetamine dependence is associated with neurocognitive impairment in the initial phases of abstinence. The J Neuropsych  Clinical Neurosc 15(2):215–220

    Article  CAS  PubMed  Google Scholar 

  • Kirkpatrick MG, Gunderson EW, Perez AY, Haney M, Foltin RW, Hart CL (2019) A direct comparison of the behavioral and physiological effects of methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) in humans. Psychopharmacol (Berl.) 219:109–122

    Article  CAS  Google Scholar 

  • Kobeissy FH, Jeung JA, Warren MW, Geier JE, Gold MS (2008) Preclinical study: Changes in leptin, ghrelin, growth hormone and neuropeptide-Y after an acute model of MDMA and methamphetamine exposure in rats. Addict Biol 13(1):15–25

    Article  CAS  PubMed  Google Scholar 

  • Kobeissy FH, Jeung JA, Warren MW, Geier JE, Gold MS (2008) Changes in leptin ghrelin, growth hormone and neuropeptide-Y after an acute model of MDMA and methamphetamine exposure in rats. Addict Biol 13:15–25

    Article  CAS  PubMed  Google Scholar 

  • Kousik SM, Napier TC, Carvey PM (2012) The effects of psychostimulant drugs on blood brain barrier function and neuroinflammation. Frontier Pharmacol 3:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krasnova IN, Cadet JL (2009) Methamphetamine toxicity and messengers of death. Brain Res Rev 60(2):379–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn DM, Francescutti-Verbeem DM, Thomas DM (2006) Dopamine quinones activate microglia and induce a neurotoxic gene expression profile. Annals New York Acad Sci 1074(1):31–41

    Article  CAS  PubMed  Google Scholar 

  • Laćan G, Hadamitzky M, Kuczenski R, Melega WP (2013) Alterations in the striatal dopamine system during intravenous methamphetamine exposure: effects of contingent and noncontingent administration. Synapse 67(8):476–488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Cozannet R, Markou A, Kuczenski R (2013) Extended-access, but not limited-access, methamphetamine self-administration induces behavioral and nucleus accumbens dopamine response changes in rats. Euro J Neurosci 38(10):3487–3495

    Article  PubMed  Google Scholar 

  • Levi MS, Divine B, Hanig JP, Doerge DR, Vanlandingham MM, George NI, Bowyer JF (2012) A comparison of methylphenidate-, amphetamine-, and methamphetamine-induced hyperthermia and neurotoxicity in male Sprague-Dawley rats during the waking (lights off) cycle. Neurotoxic Tera 34(2):253–262

    Article  CAS  PubMed  Google Scholar 

  • Lezcano LB, Pedre LDCL, Verdecia CIF, Sánchez TS, Fuentes NP, Turner LF (2009) Convenience of the traversal beam test modified to evaluate the model of Parkinsons disease in rat lesioned in SNPC. J Ani Biol 3(9):145–151

    Google Scholar 

  • Lloyd SA, Corkill B, Bruster MC, Roberts RL, Shanks RA (2017) Chronic methamphetamine exposure significantly decreases microglia activation in the arcuate nucleus. J Chem Neuro 82:5–11

    Article  CAS  PubMed  Google Scholar 

  • Logan BK (1996) Methamphetamine and driving impairment. Journal of Forensic Science 41(3):457–464

    Article  CAS  Google Scholar 

  • Makisumi T, Yoshida KI, Watanabe T, Tan N, Murakami N, Morimoto A (1998) Sympatho-adrenal involvement in methamphetamine-induced hyperthermia through skeletal muscle hypermetabolism. Euro J Pharmacol 363(2–3):107–112

    Article  CAS  PubMed  Google Scholar 

  • Marques E, Vasconcelos F, Rolo MR, Pereira FC, Silva AP, Macedo TR, Ribeiro CF (2008) Influence of chronic exercise on the amphetamine-induced dopamine release and neurodegeneration in the striatum of the rat. Ann N Y Acad Sci. 1139:222–231

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto RR, Seminerio MJ, Turner RC, Robson MJ, Nguyen L, Miller DB, O’callaghan JP (2014) Methamphetamine-induced toxicity: an updated review on issues related to hyperthermia. Pharmacol Herapeutics 144(1):28–40

    Article  CAS  Google Scholar 

  • McConnell SE, O’Banion MK, Cory-Slechta DA, Olschowka JA, Opanashuk LA (2015) Characterization of binge-dosed methamphetamine-induced neurotoxicity and neuroinflammation. Neurotoxicology 50:131–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moratalla R, Khairnar A, Simola N, Granado N, García-Montes JR, Porceddu PF, Morelli M (2017) Amphetamine-related drugs neurotoxicity in humans and in experimental animals: main mechanisms. Progress Neurobiol 155:149–170

    Article  CAS  PubMed  Google Scholar 

  • Moreira RV, da Costa JL, Menezes MR, de Faria DL (2016) Accessing the chemical profile of ecstasy tablets seized in São Paulo (Brazil) by FT-Raman spectroscopy. Vibrational Spectroscopy 87:104–110

    Article  CAS  Google Scholar 

  • Nash JF, Yamamoto BK (1992) Methamphetamine neurotoxicity and striatal glutamate release: comparison to 3, 4-methylenedioxymethamphetamine. Brain Res 581(2):237–243

    Article  CAS  PubMed  Google Scholar 

  • Northrop NA, Yamamoto BK (2014) Methamphetamine neurotoxicity and neuroinflammatory processes. In Neuroinflammation and neurodegeneration. Springer, New York, NY, pp 443–462

  • O’Callaghan JP, Jensen KF, Miller DB (1995) Quantitative aspects of drug and toxicant-induced astrogliosis. Neurochem Internation 26(2):115–124

    Article  PubMed  Google Scholar 

  • Ornstein TJ, Iddon JL, Baldacchino AM, Sahakian BJ, London M, Everitt BJ, Robbins TW (2000) Profiles of cognitive dysfunction in chronic amphetamine and heroin abusers. Neuropsychopharma 23(2):113

    Article  CAS  PubMed  Google Scholar 

  • Patricio F, Parra I, Martínez I, Pérez-Severiano F, Montes S, Aguilera J, Limón ID, Tizabi Y, Mendieta L (2019) Effectiveness of fragment C domain of tetanus toxin and pramipexole in an animal model of Parkinson’s disease. Neurotoxicity Res 35(3):699–710

    Article  CAS  PubMed  Google Scholar 

  • Quinton MS, Yamamoto BK (2006) Causes and consequences of methamphetamine and MDMA toxicity. The AAPS J 8(2):E337–E337

    Article  PubMed  PubMed Central  Google Scholar 

  • Ricaurte GA, Guillery RW, Seiden LS, Schuster CR, Moore RY (1982) Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain res 235(1):93–103

    Article  CAS  PubMed  Google Scholar 

  • Ricaurte GA, Seiden LS, Schuster CR (1984) Further evidence that amphetamines produce long-lasting dopamine neurochemical deficits by destroying dopamine nerve fibers. Brain Res 303(2):359–364

    Article  CAS  PubMed  Google Scholar 

  • Seferian A, Chaumais MC, Savale L, Gunther S, Tubert-Bitter P, Humbert M (2013) Drugs induced pulmonary arterial hypertension. Presse Med 42(Part 2):e303–e310. https://doi.org/10.1016/j.lpm.2013.07.005

  • Segal DS, Kuczenski R, O’Neil ML, Melega WP, Cho AK (2005) Prolonged exposure of rats to intravenous methamphetamine: behavioral and neurochemical characterization. Psychopharmacol 180(3):501–512

    Article  CAS  PubMed  Google Scholar 

  • Shah A, Silverstein PS, Singh DP, Kumar A (2012) Involvement of metabotropic glutamate receptor 5, AKT/PI3K signaling and NF-κB pathway in methamphetamine-mediated increase in IL-6 and IL-8 expression in astrocytes. J Neuroinflammat 9(1):52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu-Chen C, Chen PN, Hsieh YS, Yu CH, Lin MH, Lin YH, Kuo DY (2014) Involvement of hypothalamic PI3K–STAT3 signalling in regulating appetite suppression mediated by amphetamine. British Journal of Pharmacology 171(13):3223–3233

    Article  CAS  Google Scholar 

  • Skinbjerg M, Liow JS, Seneca N, Hong J, Lu S, Thorsell A, Innis RB (2010) D2 dopamine receptor internalization prolongs the decrease of radioligand binding after amphetamine: a PET study in a receptor internalization-deficient mouse model. Neuroimage 50(4):1402–1407

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta neuropathologica 119(1):7–35

    Article  PubMed  Google Scholar 

  • Sprague JE, Banks ML, Cook VJ, Mills EM (2003) Hypothalamic-pituitary-thyroid axis and sympathetic nervous system involvement in hyperthermia induced by 3, 4-methylenedioxymethamphetamine (Ecstasy). J Pharmacol Exp Therapeutics 305(1):159–166

    Article  CAS  PubMed  Google Scholar 

  • Sulzer D, Sonders MS, Poulsen NW, Galli A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Progress in Neurobiology 75(6):406–433

    Article  CAS  PubMed  Google Scholar 

  • Switzer RC (2000) Application of silver degeneration stains for neurotoxicity testing. Toxicol Pathol 28(1):70–83

    Article  CAS  PubMed  Google Scholar 

  • Thanos PK, Kim R, Delis F, Ananth M, Chachati G, Rocco MJ, Cadet JL (2016) Chronic methamphetamine effects on brain structure and function in rats. PloS one 11(6):e0155457

  • Thanos PK, Kim R, Delis F, Rocco MJ, Cho J, Volkow ND (2017) Effects of chronic methamphetamine on psychomotor and cognitive functions and dopamine signaling in the brain. Behav Brain Res 320:282–290

    Article  CAS  PubMed  Google Scholar 

  • Thomas DM, Kuhn DM (2005) MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity. Brain Res 1050(1–2):190–198

    Article  CAS  PubMed  Google Scholar 

  • Thomas DM, Dowgiert J, Geddes TJ, Francescutti-Verbeem D, Liu X, Kuhn DM (2004) Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines. Neuroscience Letters 367(3):349–354

    Article  CAS  PubMed  Google Scholar 

  • Timár J, Gyarmati S, Szabo A, Fürst S (2003) Behavioural changes in rats treated with a neurotoxic dose regimen of dextrorotatory amphetamine derivatives. Behav Pharmacol 14(3):199–206

    Article  PubMed  Google Scholar 

  • Jing Tong, Prasad S, Meza AD, Demke J (2002) Clobenzorex-induced hepatitis: a case report from US-Mexico border. The Am J Gastroenterol 9(97):S204–S205

    Article  Google Scholar 

  • Tung CS, Chang ST, Huang CL, Huang NK (2017) The neurotoxic mechanisms of amphetamine: step by step for striatal dopamine depletion. Neurosci Lett 639:185–191

  • Valtier S, Cody JT (2000) Differentiation of clobenzorex use from amphetamine abuse using the metabolite 4-hydroxyclobenzorex. Analytical Toxicol 24(7):606–613

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Chang L, Wang GJ, Fowler JS, Leonido-Yee M, Franceschi D, Logan J (2001) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 158(3):377–382

    Article  CAS  PubMed  Google Scholar 

  • Wallace TL, Gudelsky GA, Vorhees CV (2001) Neurotoxic regimen of methamphetamine produces evidence of behavioral sensitization in the rat. Synapse 39(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Walsh SL, Wagner GC (1992) Motor impairments after methamphetamine-induced neurotoxicity in the rat. J Pharmacol Exp Therapeutics 263(2):617–626

    CAS  PubMed  Google Scholar 

  • Wellman PJ, Davies BT, Morien A, McMahon L (1993) Modulation of feeding by hypothalamic paraventricular nucleus α1-and α2-adrenergic receptors. Life Sci 53(9):669–679

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto BK, Moszczynska A, Gudelsky, & G. A. (2010) Amphetamine toxicities classical and emerging mechanisms. Ann NY Aca Sci 1187:101–121

    Article  CAS  PubMed  Google Scholar 

  • Young R, Darmani NA, Elder EL, Dumas D, Glennon RA (1997) Clobenzorex: evidence for amphetamine-like behavioral actions. Pharmacol Biochem Behav 56(2):311–316

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our thanks to Dr. Victor Alemán, CINVESTAV (IPN, Mexico City), for the donation of the drug (+) amphetamine hydrochloride. Clobenzorex hydrochloride was provided by the Claude Bernard bioterium at the BUAP. Thanks to Benjamin Stewart (English language native and academic proof-reader) for editing the English language text.

Funding

This work was supported by a grant from extraordinary support VIEP-BUAP-2020 given to Patricio-Martínez A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleidy Patricio-Martínez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1269 KB)

Supplementary file2 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apóstol del Rosal, G.D., Limón, I.D., Martínez, I. et al. The Chronic Oral Administration of Clobenzorex or Amphetamine Decreases Motor Behavior and Induces Glial Activation in the Striatum Without Dopaminergic Degeneration. Neurotox Res 39, 1405–1417 (2021). https://doi.org/10.1007/s12640-021-00395-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-021-00395-1

Keywords

Navigation