Skip to main content

Advertisement

Log in

A direct comparison of the behavioral and physiological effects of methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) in humans

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Despite their chemical similarities, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) produce differing neurochemical and behavioral responses in animals. In humans, individual studies of methamphetamine and MDMA indicate that the drugs engender overlapping and divergent effects; there are only limited data comparing the two drugs in the same individuals.

Objectives

This study examined the effects of methamphetamine and MDMA using a within-subject design.

Methods

Eleven adult volunteers completed this 13-day residential laboratory study, which consisted of four 3-day blocks of sessions. On the first day of each block, participants received oral methamphetamine (20, 40 mg), MDMA (100 mg), or placebo. Drug plasma concentrations, cardiovascular, subjective, and cognitive/psychomotor performance effects were assessed before drug administration and after. Food intake and sleep were also assessed. On subsequent days of each block, placebo was administered and residual effects were assessed.

Results

Acutely, both drugs increased cardiovascular measures and “positive” subjective effects and decreased food intake. In addition, when asked to identify each drug, participants had difficulty distinguishing between the amphetamines. The drugs also produced divergent effects: methamphetamine improved performance and disrupted sleep, while MDMA increased “negative” subjective-effect ratings. Few residual drug effects were noted for either drug.

Conclusions

It is possible that the differences observed could explain the differential public perception and abuse potential associated with these amphetamines. Alternatively, the route of administration by which the drugs are used recreationally might account for the many of the effects attributed to these drugs (i.e., MDMA is primarily used orally, whereas methamphetamine is used by routes associated with higher abuse potential).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allott K, Redman J (2006) Patterns of use and harm reduction practices of ecstasy users in Australia. Drug Alcohol Depend 82:168–176

    Article  PubMed  Google Scholar 

  • Baicy K, London ED (2007) Corticolimbic dysregulation and chronic methamphetamine abuse. Addiction 102(Suppl 1):5–15

    Article  PubMed  Google Scholar 

  • Bedi G, Hyman D, de Wit H (2010) Is ecstasy an “empathogen”? Effects of 3,4-methylenedioxymethamphetamine on prosocial feelings and identification of emotional states in others. Biol Psychiatry 68:1134–1140

    Article  PubMed  CAS  Google Scholar 

  • Bolla KI, McCann UD, Ricaurte GA (1998) Memory impairment in abstinent MDMA (“ecstasy”) users. Neurology 51:1532–1537

    PubMed  CAS  Google Scholar 

  • Cami J, Farre M, Mas M, Roset PN, Poudevida S, Mas A, San L, de la Torre R (2000) Human pharmacology of 3,4-methylenedioxymethamphetamine ("ecstasy"): psychomotor performance and subjective effects. J Clin Psychopharmacol 20:455–466

    Article  PubMed  CAS  Google Scholar 

  • Cho AK, Melega WP, Kuczenski R, Segal DS (2001) Relevance of pharmacokinetic parameters in animal models of methamphetamine abuse. Synapse 39:161–166

    Article  PubMed  CAS  Google Scholar 

  • Comer SD, Haney M, Foltin RW, Fischman MW (1996) Amphetamine self-administration by humans: modulation by contingencies associated with task performance. Psychopharmacology 127:39–46

    Article  PubMed  CAS  Google Scholar 

  • Comer SD, Hart CL, Ward AS, Haney M, Foltin RW, Fischman MW (2001) Effects of repeated oral methamphetamine administration in humans. Psychopharmacology 155:397–404

    Article  PubMed  CAS  Google Scholar 

  • Cook CE, Jeffcoat AR, Sadler BM, Hill JM, Voyksner RD, Pugh DE, White WR, Perez-Reyes M (1992) Pharmacokinetics of oral methamphetamine and effects of repeated daily dosing in humans. Drug Metab Dispos 20:856–862

    PubMed  CAS  Google Scholar 

  • Cook CE, Jeffcoat AR, Hill JM, Pugh DE, Patetta PK, Sadler BM, White WR, Perez-Reyes M (1993) Pharmacokinetics of methamphetamine self-administered to human subjects by smoking S-(+)-methamphetamine hydrochloride. Drug Metab Dispos 21:717–723

    PubMed  CAS  Google Scholar 

  • Crean RD, Davis SA, Von Huben SN, Lay CC, Katner SN, Taffe MA (2006) Effects of (+/−)3,4-methylenedioxymethamphetamine, (+/−)3,4-methylenedioxyamphetamine and methamphetamine on temperature and activity in rhesus macaques. Neuroscience 142:515–525

    Article  PubMed  CAS  Google Scholar 

  • de Wit H, Dudish S, Ambre J (1993) Subjective and behavioral effects of diazepam depend on its rate of onset. Psychopharmacology 112:324–330

    Article  PubMed  Google Scholar 

  • Foltin RW, Fischman MW, Byrne MF (1988) Effects of smoked marijuana on food intake and body weight of humans living in a residential laboratory. Appetite 11:1–14

    Article  PubMed  CAS  Google Scholar 

  • Foltin RW, Rolls BJ, Moran TH, Kelly TH, McNelis AL, Fischman MW (1992) Caloric, but not macronutrient, compensation by humans for required-eating occasions with meals and snack varying in fat and carbohydrate. Am J Clin Nutr 55:331–342

    PubMed  CAS  Google Scholar 

  • Grelotti DJ, Kanayama G, Pope HG Jr (2010) Remission of persistent methamphetamine-induced psychosis after electroconvulsive therapy: presentation of a case and review of the literature. Am J Psychiatry 167:17–23

    Article  PubMed  Google Scholar 

  • Halkitis PN, Fischgrund BN, Parsons JT (2005) Explanations for methamphetamine use among gay and bisexual men in New York City. Subst Use Misuse 40:1331–1345

    Article  PubMed  Google Scholar 

  • Hamamoto DT, Rhodus NL (2009) Methamphetamine abuse and dentistry. Oral Dis 15:27–37

    Article  PubMed  CAS  Google Scholar 

  • Haney M, Comer SD, Fischman MW, Foltin RW (1997) Alprazolam increases food intake in humans. Psychopharmacology 132:311–314

    Article  PubMed  CAS  Google Scholar 

  • Haney M, Ward AS, Comer SD, Hart CL, Foltin RW, Fischman MW (2001) Bupropion SR worsens mood during marijuana withdrawal in humans. Psychopharmacology 155:171–179

    Article  PubMed  CAS  Google Scholar 

  • Haney M, Gunderson EW, Rabkin J, Hart CL, Vosburg SK, Comer SD, Foltin RW (2007) Dronabinol and marijuana in HIV-positive marijuana smokers. Caloric intake, mood and sleep. JAIDS 45:545–554

    Article  PubMed  CAS  Google Scholar 

  • Hart CL, Ward AS, Haney M, Foltin RW, Fischman MW (2001) Methamphetamine self-administration by humans. Psychopharmacology 157:75–81

    Article  PubMed  CAS  Google Scholar 

  • Hart CL, Haney M, Foltin RW, Fischman MW (2002) Effects of the NMDA antagonist memantine on human methamphetamine discrimination. Psychopharmacology 164:376–384

    Article  PubMed  CAS  Google Scholar 

  • Hart CL, Ward AS, Haney M, Nasser J, Foltin RW (2003) Methamphetamine attenuates disruptions in performance and mood during simulated night-shift work. Psychopharmacology 169:42–51

    Article  PubMed  CAS  Google Scholar 

  • Hart CL, Gunderson EW, Perez A, Kirkpatrick MG, Thurmond A, Comer SD, Foltin RW (2008) Acute physiological and behavioral effects of intranasal methamphetamine in humans. Neuropsychopharmacology 33:1847–1855

    Article  PubMed  CAS  Google Scholar 

  • Hatsukami DK, Fischman MW (1996) Crack cocaine and cocaine hydrochloride. Are the differences myth or reality? JAMA 276:1580–1588

    Article  PubMed  CAS  Google Scholar 

  • Holland J (2001) Ecstasy: the complete guide: a comprehensive look at the risks and benefits of MDMA. Park Street Press, Rochester, VT

    Google Scholar 

  • Hoshi R, Mullins K, Boundy C, Brignell C, Piccini P, Curran HV (2007) Neurocognitive function in current and ex-users of ecstasy in comparison to both matched polydrug-using controls and drug-naïve controls. Psychopharmacology 194:371–379

    Article  PubMed  CAS  Google Scholar 

  • Johanson CE, Kilbey M, Gatchalian K, Tancer M (2006) Discriminative stimulus effects of 3,4-methylenedioxymethamphetamine (MDMA) in humans trained to discriminate among d-amphetamine, meta-chlorophenylpiperazine and placebo. Drug and Alcohol Dependence 81:27–36

    Article  PubMed  CAS  Google Scholar 

  • Jones HE, Garrett BE, Griffiths RR (2001) Reinforcing effects of oral cocaine: contextual determinants. Psychopharmacology 154:143–152

    Article  PubMed  CAS  Google Scholar 

  • Kelly TH, Foltin RW, Emurian CS, Fischman MW (1993) Performance-based testing for drugs of abuse: dose and time profiles of marijuana, amphetamine, alcohol, and diazepam. J Anal Toxicol 17:264–272

    PubMed  CAS  Google Scholar 

  • Kelly BC, Parsons JT, Wells BE (2006) Prevalence and predictors of club drug use among club-going young adults in New York City. J Urban Health 83:884–895

    Article  PubMed  Google Scholar 

  • Kushida CA, Chang A, Gadkary C, Guilleminault C, Carrillo O, Dement WC (2001) Comparison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients. Sleep Med 2:389–396

    Article  PubMed  CAS  Google Scholar 

  • Kuypers KP, Ramaekers JG (2005) Transient memory impairment after acute dose of 75 mg 3.4-Methylene-dioxymethamphetamine. J Psychopharmacol 19:633–639

    Article  PubMed  CAS  Google Scholar 

  • Liechti ME, Geyer MA, Hell D, Vollenweider FX (2001) Effects of MDMA (ecstasy) on prepulse inhibition and habituation of startle in humans after pretreatment with citalopram, haloperidol, or ketanserin. Neuropsychopharmacology 24:240–252

    Article  PubMed  CAS  Google Scholar 

  • Lyvers M (2006) Recreational ecstasy use and the neurotoxic potential of MDMA: current status of the controversy and methodological issues. Drug Alcohol Rev 25:269–276

    Article  PubMed  Google Scholar 

  • Marrone GF, Pardo JS, Krauss RM, Hart CL (2010) Amphetamine analogs methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) differentially affect speech. Psychopharmacology 208:169–177

    Article  PubMed  CAS  Google Scholar 

  • McLeod DR, Griffiths RR, Bigelow GE, Yingling J (1982) An automated version of the digit symbol substitution test (DSST). Behav Res Meth Instrum 14:463–436

    Article  Google Scholar 

  • Miller TP, Taylor JL, Tinklenberg JR (1988) A comparison of assessment techniques measuring the effects of methylphenidate, secobarbital, diazepam and diphenhydramine in abstinent alcoholics. Neuropsychobiology 19:90–96

    Article  PubMed  CAS  Google Scholar 

  • Mohs RC, Tinklenberg JR, Roth WT, Kopell BS (1978) Methamphetamine and diphenhydramine effects on the rate of cognitive processing. Psychopharmacology 59:13–19

    Article  PubMed  CAS  Google Scholar 

  • Mueller M, Kolbrich EA, Peters FT, Maurer HH, McCann UD, Huestis MA, Ricaurte GA (2009) Direct comparison of (+/−) 3,4-methylenedioxymethamphetamine ("ecstasy") disposition and metabolism in squirrel monkeys and humans. Ther Drug Monit 31:367–373

    Article  PubMed  CAS  Google Scholar 

  • Parrott AC, Lasky J (1998) Ecstasy (MDMA) effects upon mood and cognition: before, during and after a Saturday night dance. Psychopharmacology 139:261–268

    Article  PubMed  CAS  Google Scholar 

  • Perez GA, Haney M, Foltin RW, Hart CL (2008a) Modafinil decreases food intake in humans subjected to simulated shift work. Pharmacol Biochem Behav 90:717–722

    Article  PubMed  CAS  Google Scholar 

  • Perez AY, Kirkpatrick MG, Gunderson EW, Marrone G, Silver R, Foltin RW, Hart CL (2008b) Residual effects of intranasal methamphetamine on sleep, mood, and performance. Drug Alcohol Depend 94:258–262

    Article  PubMed  CAS  Google Scholar 

  • Peroutka SJ, Newman H, Harris H (1988) Subjective effects of 3,4-methylenedioxymethamphetamine in recreational users. Neuropsychopharmacology 1:273–277

    PubMed  CAS  Google Scholar 

  • Randall S, Johanson CE, Tancer M, Roehrs T (2009) Effects of acute 3,4-methylenedioxymethamphetamine on sleep and daytime sleepiness in MDMA users: a preliminary study. Sleep 32:1513–1519

    PubMed  Google Scholar 

  • Rodgers J, Buchanan T, Pearson C, Parrott AC, Ling J, Hefferman TM, Scholey AB (2006) Differential experiences of the psychobiological sequelae of ecstasy use: quantitative and qualitative data from an internet study. J Psychopharmacol 20:437–446

    Article  PubMed  Google Scholar 

  • Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41

    Article  PubMed  CAS  Google Scholar 

  • Silber BY, Croft RJ, Papafotiou K, Stough C (2006) The acute effects of d-amphetamine and methamphetamine on attention and psychomotor performance. Psychopharmacology 187:154–169

    Article  PubMed  CAS  Google Scholar 

  • Silverman K, Kirby KC, Griffiths RR (1994a) Modulation of drug reinforcement by behavioral requirements following drug ingestion. Psychopharmacology 114:243–247

    Article  PubMed  CAS  Google Scholar 

  • Silverman K, Mumford GK, Griffiths RR (1994b) Enhancing caffeine reinforcement by behavioral requirements following drug ingestion. Psychopharmacology 114:424–432

    Article  PubMed  CAS  Google Scholar 

  • Simon SL, Richardson K, Dacey J, Glynn S, Domier CP, Rawson RA, Ling W (2002) A comparison of patterns of methamphetamine and cocaine use. J Addict Dis 21:35–44

    Article  PubMed  Google Scholar 

  • Stoops WW, Lile JA, Fillmore MT, Glaser PE, Rush CR (2005a) Reinforcing effects of methylphenidate: influence of dose and behavioral demands following drug administration. Psychopharmacology 177:349–355

    Article  PubMed  CAS  Google Scholar 

  • Stoops WW, Lile JA, Fillmore MT, Glaser PE, Rush CR (2005b) Reinforcing effects of modafinil: influence of dose and behavioral demands following drug administration. Psychopharmacology 182:186–193

    Article  PubMed  CAS  Google Scholar 

  • Tancer ME, Johanson CE (2001) The subjective effects of MDMA and mCPP in moderate MDMA users. Drug Alcohol Depend 65:97–101

    Article  PubMed  CAS  Google Scholar 

  • Tancer M, Johanson CE (2003) Reinforcing, subjective, and physiological effects of MDMA in humans: a comparison with d-amphetamine and mCPP. Drug Alcohol Depend 72:33–44

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider FX, Gamma A, Liechti M, Huber T (1998) Psychological and cardiovascular effects and short-term sequelae of MDMA ("ecstasy") in MDMA-naive healthy volunteers. Neuropsychopharmacology 19:241–251

    PubMed  CAS  Google Scholar 

  • Wang Z, Woolverton WL (2007) Estimating the relative reinforcing strength of (+/−)-3,4-methylenedioxymethamphetamine (MDMA) and its isomers in rhesus monkeys: comparison to (+)-methamphetamine. Psychopharmacology 189:483–488

    Article  PubMed  CAS  Google Scholar 

  • Wesnes K, Warburton DM (1983) Effects of smoking on rapid information processing performance. Neuropsychobiology 9:223–229

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The medical assistance of Drs. Benjamin R Nordstrom and David Mysels and technical assistance of Gydmer Perez and Michaela Bamdad are gratefully acknowledged. This research was supported by grant number DA-03746 from the National Institute on Drug Abuse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl L. Hart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirkpatrick, M.G., Gunderson, E.W., Perez, A.Y. et al. A direct comparison of the behavioral and physiological effects of methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) in humans. Psychopharmacology 219, 109–122 (2012). https://doi.org/10.1007/s00213-011-2383-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2383-4

Keywords

Navigation