Skip to main content
Log in

Metal Doped Nanostructures as Catalysts of Nitrogen Reduction to Ammonia

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Here, the catalytic activity of Mn-C48, Mn-Si48, Cu-C38, Cu-B19N19, Ni-C44, Ni-B22P22, Fe-C80, Fe-Al40P40 nanocages for N2-RR are investigated. The possible mechanisms of N2-RR on metal adsorbed nanocages are examined. The limiting step in distal, enzymatic and alternating pathways for N2-RR on metal adsorbed nanocages is metal-*NN → Metal-*NNH. The metal-*NN → Metal-*NNH is limiting step for N2-RR on metal adsorbed nanocages by mixed pathway. In distal and enzymatic pathways, the Metal-*NN → Metal-*NNH and Metal-*NNH2 → Metal-*N + NH3 are endothermic steps. In alternating and mixed pathways, the Metal-*NN → Metal-*NNH and Metal-*NH2NH2 → Metal-*NH2NH3 are endothermic steps. The Mn-Si48, Cu-B19N19, Ni-B22P22 and Fe-Al40P40 nanocages have higher catalytic activity than carbon nanocages for N2-RR. The over-potential for N2-RR on Fe-Al40P40 by studied pathways are 0.220, 0.230, 0.223 and 0.238 V. The Mn-Si48, Cu-B19N19, Ni-B22P22 and Fe-Al40P40 nanocages can be proposed as new catalysts for N2-RR to create the NH3 molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Zhu Z, Tao H (2022) ACS Appl Nano Mater 5:18753–18760

    Article  CAS  Google Scholar 

  2. Yin S, Liu S (2021) ACS Appl Mater Interfaces 13:20233–20239

    Article  PubMed  CAS  Google Scholar 

  3. Dutta S, Pati SK (2023) Catal Today 424:113804

    Article  CAS  Google Scholar 

  4. Wang S, Qian C (2023) Mater Chem Front 7:4259–4280

    Article  CAS  Google Scholar 

  5. Moggia G, Hoekx S, Daems N (2023) ChemElectroChem 212:293

    Google Scholar 

  6. Hamsa AP, Arulprakasam M (2023) Chem Commun 59:10689–10710

    Article  CAS  Google Scholar 

  7. Zou L, Cen W (2023) Comput Theor Chem 1227:114213

    Article  CAS  Google Scholar 

  8. Zeng W, Tang X (2023) Mater Today Commun 36:106629

    Article  CAS  Google Scholar 

  9. Maman MP, Gurusamy T (2023) Angew Chem 135:5462

    Article  Google Scholar 

  10. Maman MP (2023) Angew Chem Int Ed 62:5462

    Article  Google Scholar 

  11. Pham HQ, Pham HTQ (2023) Coordination Chem Rev 486:215143

    Article  CAS  Google Scholar 

  12. Dutta S, Pati SK (2023) Phys Chem Chem Phys 25:15788–15797

    Article  PubMed  CAS  Google Scholar 

  13. Singh G, Ramadass K (2023) Prog Mater Sci 135:101104

    Article  CAS  Google Scholar 

  14. Wang S, Zhao T, Yan L (2023) Catalysts 13:869

    Article  ADS  CAS  Google Scholar 

  15. Dutta S, Pati SK (2023) ChemPhysChem 24:453

    Google Scholar 

  16. Chen S, Zhou Z (2022) ChemElectroChem 9:625

    Google Scholar 

  17. Jiang K, Li K (2022) New J Chem 46:16743–16751

    Article  CAS  Google Scholar 

  18. Wang Y, Luo H, Ye C (2022) J Appl Electrochem 52:1295–1304

    Article  CAS  Google Scholar 

  19. Kong L, Liu G (2021) Matter Radiat Extremes 6:68202

    Article  CAS  Google Scholar 

  20. Zhu ZY, Liu YL, Gou GQ, Gao W, Chen J (2021) Sci Rep 11:10020

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  21. Li H, Si S, Yang K, Mao Z, Sun Y, Wu L (2023) Prog Org Coatings 184:107881

    Article  CAS  Google Scholar 

  22. Liu Z, Fan B, Zhao J, Yang B, Zheng X (2023) Corros Sci 212:110957

    Article  CAS  Google Scholar 

  23. Zhao X, Zhang Y, Hou Z, Wang L (2023) Chin J Chem 41:2963–2968

    Article  CAS  Google Scholar 

  24. Chen X, Lv S, Kang J, Wang Z (2023) Proc Natl Acad Sci 120:2306841120

  25. Wan Q, Huang C, Hou Z, Jiang H, Wang L (2023) Org Chem Frontiers 10:3585–3590

    Article  CAS  Google Scholar 

  26. Tang T, Zhou M, Lv J, Cheng H, Wang H, Liu X (2022) Colloids Sur B 216:112538

    Article  CAS  Google Scholar 

  27. Wang C, Shang H, Li J, Wang Y, Xu H, Xu Y (2021) Chem Eng J 420:129805

    Article  CAS  Google Scholar 

  28. Chang T, Wang Y, Wang Y, Zhao Z, Shen Z (2022) Sci Total Environ 828:154290

    Article  ADS  PubMed  CAS  Google Scholar 

  29. Yu Q (2023) Sci China Mater 66:1079–1088

    Article  CAS  Google Scholar 

  30. Zhang Y, Zhao M, Huang J, Zhao N (2023) Molecules 28:6671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Jia L, Wang Z, Wang L, Zeng J, Du P, Jia S (2023). Mater Horiz. https://doi.org/10.1039/D3MH01359

    Article  PubMed  Google Scholar 

  32. Zheng Y, Liu Y, Guo X, Zhao YJ (2020) Mater Sci Technol 41:117–126

    Article  CAS  Google Scholar 

  33. Wang Z, Chen C, Liu H, Chen J (2020) Sci Total Environ 708:135063

    Article  ADS  PubMed  CAS  Google Scholar 

  34. Jiang J, Zhang T, Chen D (2021) IEEE Trans Power Electron 36:10214–10223

    Article  ADS  Google Scholar 

  35. Ma W (2022) Research Posters. Columbus, Ohio, USA. V009T12A020. ASME

  36. Shen X, Najmabadi M (2021) Workshop natural. Lang Proces Convers 1:120–129

    Google Scholar 

  37. Zhang Y, Aghajan ZM, Ison M, Lu Q, Tang H (2023) Sci Rep 13:651

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zhang Y, Lu Q, Qiao JX, Salamon N, Nariai H (2022) Brain Commun 4:fcab267

    Article  PubMed  Google Scholar 

  39. Cui X (2022) Emerg Manag Sci Technol 2:14

    Article  Google Scholar 

  40. Jia Z, Qian Z, Tang Y, Li X, Shi Y (2021) Oncol Res 29:105–117

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author K M Batoo would like to thank Researchers Supporting Project No. (RSP2023R148), King Saud University, Riyadh, Saudi Arabia for the financial support.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Khalid Mujasam Batoo: Conceptualization, Methodology, Software, Response to referee comments, Calculate new data in revision, Suhair Mohammad Husein Kamona: Formal analysis, Investigation Resources, Validation, Formal analysis, Response to referee comments, Calculate new data in revision, Kadhum Al-Majdi: Investigation Resources, Writing—Review & Editing, Visualization, Data Curation, Response to referee comments, Calculate new data in revision, Fadhil A. Rasen: Validation, Formal analysis, Investigation, Resources, Response to referee comments, Writing—Review & Editing, Calculate new data in revision, Usama S. Altimari: Validation, Validation, Formal analysis, Response to referee comments, Calculate new data in revision, Writing—Review & Editing, Sajjad Hussain: Formal analysis, Investigation, Resources, Validation, Formal analysis, Response to referee comments, Calculate new data in revision, Ayadh Al-khalidi: Validation, Writing—Review & Editing, Formal analysis, Investigation Resources, Response to referee comments, Calculate new data in revision, Adnan Hashim Abdulkadhim: Methodology, Software, Formal analysis, Data Curation, Response to referee comments, Calculate new data in revision, Ashwaq Talib Kareem: Conceptualization, Methodology, Software, Response to referee comments, Calculate new data in revision, Ahmed Alawadi: Validation, Formal analysis, Writing—Review & Editing, Investigation, Resources, Response to referee comments, Calculate new data in revision, Ali Alsalamy: Conceptualization, Writing—Review & Editing, Methodology, Software, Response to referee comments, Calculate new data in revision, Lijuan Ma: Conceptualization, Methodology, Software, Writing—Original Draft, Writing—Review & Editing.

Corresponding authors

Correspondence to Khalid Mujasam Batoo or Rijuan Ma.

Ethics declarations

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to Participate

I confirmed.

Consent for Publication

I confirmed.

Competing Interests

The authors declare no competing interests.

Author Declarations

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batoo, K.M., Kamona, S.M.H., Al-Majdi, K. et al. Metal Doped Nanostructures as Catalysts of Nitrogen Reduction to Ammonia. Silicon 16, 1421–1431 (2024). https://doi.org/10.1007/s12633-023-02756-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02756-1

Keywords

Navigation