Skip to main content
Log in

Two-dimensional Fe-TPPHZ nanosheets for electrohydrogenation of N2 to NH3 under ambient conditions

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The design of high-performance and low-cost catalysts for mild electrocatalytic nitrogen reduction reaction (NRR) is particularly desirable and remains greatly challenging due to the unfavorably low ammonia yield rate and Faradaic efficiency (FE), which comes from the difficulty in making nitrogen activation superior to competitive hydrogen evolution reaction (HER). Herein, we report a well-designed two-dimensional nanosheet-like Fe-tetrapyridophenazine (Fe-TPPHZ) catalyst for ambient NRR process, which was facially prepared by coordinating Fe ions with TPPHZ ligand. The Fe-TPPHZ catalyst shows a remarkable NRR activity at ambient conditions with a high NH3 yield rate of 29.07 µg h−1 mg−1 and an outstanding FE of 11.5% at − 0.3 V vs. RHE. An ammonia yield rate of 21.86 µg h−1 mg−1 is observed after 100 consecutive cycles, with a retention rate of 75.2%. This work will provide a rational design idea to use non-precious metal-based complex as highly effective electrocatalysts for NRR test.

Graphical Abstract

A two-dimensional nanosheet-like Fe-tetrapyridophenazine (Fe-TPPHZ) catalyst was successfully designed and utilized for ambient NRR process, showing a remarkable NRR activity with a high NH3 yield rate of 29.07 μg h−1 mg−1, outstanding FE of 11.5% at − 0.3 V vs. RHE and good retention rate of 75.2% after 100 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu Q, Xu T, Luo Y, Kong Q, Li T, Lu S, Alshehri AA, Alzahrani KA, Sun X (2021) Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Curr Opin Electrochem 29:100766–100772

    Article  CAS  Google Scholar 

  2. Tang C, Qiao S-Z (2019) How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem Soc Rev 48:3166–3180

    Article  CAS  PubMed  Google Scholar 

  3. Duan G, Chen Y, Tang Y, Gasem KAM, Wan Ding PD, Fan M (2020) Advances in electrocatalytic ammonia synthesis under mild conditions. Prog Energ Combust 81:100860–100889

    Article  Google Scholar 

  4. Xu T, Liang J, Li S, Xu Z, Yue L, Li T, Luo Y, Liu Q, Shi X, Asiri A, Yang M, Sun C X (2021) Recent advances in nonprecious metal oxides electrocatalysts and photocatalysts for N2 reduction reaction under ambient condition. Small Sci 1:2000069–2000086

    Article  Google Scholar 

  5. Zhu X, Mou S, Peng Q, Liu Q, Luo Y, Chen G, Gao S, Sun X (2020) Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis: recent advances in catalysts developing and performances boosting. J Mater Chem A 8:1545–1556

    Article  CAS  Google Scholar 

  6. Shi L, Yin Y, Wang S, Sun H (2020) Rational catalyst design for N2 reduction under ambient conditions: strategies toward enhanced conversion efficiency. ACS Catal 10:6870–6899

    Article  CAS  Google Scholar 

  7. Cui X, Tang C, Zhang Q (2018) A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv Energy Mater 8:1800369–1800393

    Article  CAS  Google Scholar 

  8. Kordali V, Kyriacou G, Lambrou C (2000) Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem Commun 17:1673–1674

    Article  Google Scholar 

  9. Kugler K, Luhn M, Schramm JA, Rahimib K, Wessling M (2015) Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis. Phys Chem It Phys 17:3768–3782

    Article  CAS  Google Scholar 

  10. Zhang J, Zhao B, Liang W, Zhou G, Liang Z, Wang Y, Qu J, Sun Y, Jiang L (2020) Three-phase electrolysis by gold nanoparticle on hydrophobic interface for enhanced electrochemical nitrogen reduction reaction. Adv Sci 7:20022630–20022636

    Google Scholar 

  11. Lv J, Tian Z, Dai K, Ye Y, Liang C (2019) Interface and defect engineer of titanium dioxide supported palladium or platinum for tuning the activity and selectivity of electrocatalytic nitrogen reduction reaction. J Colloid Interf Sci 553:126–135

    Article  CAS  Google Scholar 

  12. Hu L, Khaniya A, Wang J, Chen G, Kaden WE, Feng X (2018) Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst. ACS Catal 8:9312–9319

    Article  CAS  Google Scholar 

  13. Li G, Pan Z, Lin H, An L (2021) In-situ formation of bismuth nanoparticles on nickel foam for ambient ammonia synthesis via electrocatalytic nitrogen reduction. J Alloy Compd 875:160006–160013

    Article  CAS  Google Scholar 

  14. Zhang L, Ji X, Ren X, Ma Y, Shi X, Tian Z, Asiri AM, Chen L, Tang B, Sun X (2018) Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: theoretical and experimental studies. Adv Mater 30:1800191–1800196

    Article  CAS  Google Scholar 

  15. Yang X, Nash J, Anibal J, Dunwell M, Kattel S, Stavitski E, Attenkofer K, Chen J, Yan Y, Xu B (2018) Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles. J Am Chem Soc 140:13387–13391

    Article  CAS  PubMed  Google Scholar 

  16. Zhao Z, Long Y, Luo S, Luo Y, Chen M, Ma J (2021) Metal-free C3N4 with plentiful nitrogen vacancy and increased specific surface area for electrocatalytic nitrogen reduction. J Energy Chem 60:546–555

    Article  Google Scholar 

  17. Yu X, Han P, Wei Z, Huang L, Gu Z, Peng S, Ma J, Zheng G (2018) Boron-doped graphene for electrocatalytic N2 reduction. Joule 2:1610–1622

    Article  CAS  Google Scholar 

  18. Wang Y, Zhang C, Li X, Gao T, Wang X-B (2021) Metal-free carbon-based nanomaterials for electrochemical nitrogen and carbon dioxide reductions. Mater Res Bull 140:111294–111308

    Article  CAS  Google Scholar 

  19. Qiu W, Xie X-Y, Qiu J, Fang W-H, Liang R, Ren X, Ji X, Cui G, Asiri AM, Cui G, Tang B, Sun X (2018) High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat Commun 9:3485–3492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhang L, Ding L-X, Chen G-F, Yang X, Wang H (2019) Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew Chem Int Ed 58:2612–2616

    Article  CAS  Google Scholar 

  21. Guo Y, Cheng Y, Li Q, Chu K (2021) FeTe2 as an earth-abundant metal telluride catalyst for electrocatalytic nitrogen fixation. J Energy Chem 56:259–263

    Article  Google Scholar 

  22. Yang X, Sun S, Meng L, Li K, Mukherjee S, Chen X, Lv J, Liang S, Zang H-Y, Yan L-K, Wu G (2021) Molecular single iron site catalysts for electrochemical nitrogen fixation under ambient conditions. Appl Catal B: Environ 285:119794–119802

    Article  CAS  Google Scholar 

  23. Liu P-Y, Shi K, Chen W-Z, Gao R, Liu Z-L, Hao H, Wang Y-Q (2021) Enhanced electrocatalytic nitrogen reduction reaction performance by interfacial engineering of MOF-based sulfides FeNi2S4/NiS hetero-interface. Appl Catal B: Environ 287:119956–119964

    Article  CAS  Google Scholar 

  24. Li Y, Li J, Huang J, Chen J, Kong Y, Yang B, Li Z, Lei L, Chai G, Wen Z, Dai L, Hou Y (2021) Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites. Angew Chem Int Ed 60:9078–9085

    Article  CAS  Google Scholar 

  25. Liu W, Han L, Wang H-T, Zhao X, Boscoboinik JA, Liu X, Pao C-W, Sun J, Zhuo L, Luo J, Ren J, Pong W-F, Xin H (2020) FeMo sub-nanoclusters/single atoms for neutral ammonia electrosynthesis. Nano Energy 77:105078–105085

    Article  CAS  Google Scholar 

  26. Wang M, Liu S, Qian T, Liu J, Zhou J, Ji H, Xiong J, Zhong J, Yan C (2019) Over 56.55% faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat Commun 10:341–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sahoo SK, Heske J, Antonietti M, Qin Q, Oschatz M, Kühne TD (2020) Electrochemical N2 reduction to ammonia using single Au/Fe atoms supported on nitrogen-doped porous carbon. ACS Appl Energy Mater 3:10061–10069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Z, Zheng K, Liu S, Dai Z, Xu Y, Li X, Wang H, Wang L (2019) Electrocatalytic nitrogen reduction to ammonia by Fe2O3 nanorod array on carbon cloth. ACS Sustain Chem Eng 7:11754–11759

    Article  CAS  Google Scholar 

  29. Zhang D, Liu Y, Mao B, Li H, Jiang T, Zhang D, Dong W, Shi W (2021) Double-phase heterostructure within Fe-doped Cu2 – xS quantum dots with boosted electrocatalytic nitrogen reduction. ACS Sustain Chem Eng 9:2844–2853

    Article  CAS  Google Scholar 

  30. Li XF, Li QK, Cheng J, Liu L, Yan Q, Wu Y, Zhang X-H, Wang Z-Y, Qiu Q, Luo Y (2016) Conversion of dinitrogen to ammonia by FeN3–embedded graphene. J Am Chem Soc 138:8706–8709

    Article  CAS  PubMed  Google Scholar 

  31. Han B, Meng H, Li F, Zhao J (2020) Fe3 cluster anchored on the C2N monolayer for efficient electrochemical nitrogen fixation. Catalysts 10:974–982

    Article  CAS  Google Scholar 

  32. Ma Z, Xiao C, Cui Z, Du W, Li Q, Sa R, Sun C (2021) Defective Fe3GeTe2 monolayer as a promising electrocatalyst for spontaneous nitrogen reduction reaction. J Mater Chem A 9:6945–6954

    Article  CAS  Google Scholar 

  33. Lv X-W, Liu X-L, Suo Y-J, Liu Y-P, Yuan Z-Y (2021) Identifying the dominant role of pyridinic-N – Mo bonding in synergistic electrocatalysis for ambient nitrogen reduction. ACS Nano 15:12109–12118

    Article  CAS  Google Scholar 

  34. Yang Z, Yuan C-Z, Xu A-W (2018) Rationally designed Fe-tetrapyridophenazine complex: a promising precursor to single-atom Fe catalyst for efficient oxygen reduction reaction in high-power Zn-air cells. Nanoscale 10:16145–16152

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Z, Yao K, Cong L, Yu Z, Qu L, Huang W (2020) Facile synthesis of a Ru-dispersed N-doped carbon framework catalyst for electrochemical nitrogen reduction. Catal Sci Technol 10:1336–1342

    Article  CAS  Google Scholar 

  36. Zhao Y, Li F, Li W, Li Y, Liu C, Zhao Z, Shan Y, Ji Y, Sun L (2021) Identification of M-NH2-NH2 intermediate and rate determing step for nitrogen reduction with bioinspired sulfur-bonded FeW catalyst. Angew Chem Int Ed 60:20331–20341

    Article  CAS  Google Scholar 

  37. Watt GW, Chrisp JD (1952) A spectrophotometric method for the determination of hydrazine. Anal Chem 24:2006–2008

    Article  CAS  Google Scholar 

  38. Li L, Tang C, Xia B, Jin H, Zheng Y, Qiao S-Z (2019) Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal 9:2902–2908

    Article  CAS  Google Scholar 

  39. Mukherjee S, Cullen DA, Karakalos S, Liu K, Zhang H, Zhao S, Xu H, More KL, Wang G, Wu G (2018) Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy 48:217–226

    Article  CAS  Google Scholar 

  40. Zhao D, Sun K, Cheong W-C, Zheng L, Zhang C, Liu S, Cao X, Wu K, Pan Y, Zhuang Z, Hu B, Wang D, Peng Q, Chen C, Li Y (2020) Synergistically interactive pyridinic-N-MoP sites: identified active centers for enhanced hydrogen evolution in alkaline solution. Angew Chem 132:9067–9075

    Article  Google Scholar 

  41. Xia L, Fu W, Zhuang P, Cao Y, Chee MOL, Dong P, Ye M, Shen J (2020) Engineering abundant edge sites of bismuth nanosheets toward superior ambient electrocatalytic nitrogen reduction via topotactic transformation. ACS Sustain Chem Eng 8:2735–2741

    Article  CAS  Google Scholar 

  42. Alper K, Tekin K, Karagöz S, Ragauskas AJ (2020) Sustainable energy and fuels from biomass: a review focusing on hydrothermal biomass processing. Sustain Energ Fuels 4:4390–4414

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21773018 and 21975033) and the Analysis and Testing Center, NERC Biomass of Changzhou University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianyu Cao or Juan Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 477.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Luo, H., Ye, C. et al. Two-dimensional Fe-TPPHZ nanosheets for electrohydrogenation of N2 to NH3 under ambient conditions. J Appl Electrochem 52, 1295–1304 (2022). https://doi.org/10.1007/s10800-022-01712-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01712-y

Keywords

Navigation